A006053
a(n) = a(n-1) + 2*a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, 924, 1652, 2993, 5373, 9707, 17460, 31501, 56714, 102256, 184183, 331981, 598091, 1077870, 1942071, 3499720, 6305992, 11363361, 20475625, 36896355, 66484244, 119801329, 215873462, 388991876, 700937471
Offset: 0
G.f. = x^2 + x^3 + 3*x^4 + 4*x^5 + 9*x^6 + 14*x^7 + 28*x^8 + 47*x^9 + ...
Regarding the description "number of compositions of n into floor(j/2) kinds of j's," the a(6)=9 compositions of 6 are (2a, 2a, 2a), (3a, 3a), (2a, 4a), (2a, 4b), (4a, 2a), (4b, 2a), (6a), (6b), (6c). - _Bridget Tenner_, Feb 25 2022
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications (2012).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 433
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 11.
- László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 2 at p. 6.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. Sachdeva and A. K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
a006053 n = a006053_list !! n
a006053_list = 0 : 0 : 1 : zipWith (+) (drop 2 a006053_list)
(zipWith (-) (map (2 *) $ tail a006053_list) a006053_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[ n eq 1 select 0 else n eq 2 select 0 else n eq 3 select 1 else Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40] ]; // Vincenzo Librandi, Aug 19 2011
-
a[0]:=0: a[1]:=0: a[2]:=1: for n from 3 to 40 do a[n]:=a[n-1]+2*a[n-2]-a[n-3] od:seq(a[n], n=0..40); # Emeric Deutsch
A006053:=z**2/(1-z-2*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{1,2,-1}, {0,0,1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
-
{a(n) = if( n<0, n = -1-n; polcoeff( -1 / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( x^2 / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))}; /* Michael Somos, Nov 30 2014 */
-
@CachedFunction
def a(n): # a = A006053
if (n<3): return (n//2)
else: return a(n-1) + 2*a(n-2) - a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Feb 12 2023
A085810
Number of three-choice paths along a corridor of height 5, starting from the lower side.
Original entry on oeis.org
1, 2, 5, 13, 35, 96, 266, 741, 2070, 5791, 16213, 45409, 127206, 356384, 998509, 2797678, 7838801, 21963661, 61540563, 172432468, 483144522, 1353740121, 3793094450, 10628012915, 29779028189, 83438979561, 233790820762, 655067316176, 1835457822857, 5142838522138, 14409913303805
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Svjetlan Feretic, Generating functions for bi-wall directed polygons, in: Proc. of the Seventh Int. Conf. on Lattice Path Combinatorics and Applications (eds. S. Rinaldi and S. G. Mohanty), Siena, 2010, 147-151.
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31 (formula 5).
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-1).
-
I:=[1,2,5]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
-
LinearRecurrence[{4,-3,-1}, {1,2,5}, 50] (* Roman Witula, Aug 09 2012 *)
CoefficientList[Series[(1 - 2 x)/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
x='x+O('x^30); Vec((1-2*x)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018
A122600
Expansion of 1/(1 + 3*x - 4*x^2 + x^3).
Original entry on oeis.org
1, -3, 13, -52, 211, -854, 3458, -14001, 56689, -229529, 929344, -3762837, 15235416, -61686940, 249765321, -1011279139, 4094585641, -16578638800, 67125538103, -271785755150, 1100438056662, -4455582728689, 18040286167865, -73043627475013, 295747609825188, -1197457625543481
Offset: 0
- Toufik Mansour and Mark Shattuck, Avoidance of vincular patterns by flattened derangements, arXiv:2504.14713 [math.CO], 2025. See p. 6.
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (-3,4,-1).
-
p[x_] := 1 - 4 x + 3x^2 + x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}]
CoefficientList[Series[1/(1 + 3*x - 4*x^2 + x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{-3, 4, -1}, {1, -3, 13}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
A215100
a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=22.
Original entry on oeis.org
2, 5, 22, 88, 357, 1445, 5851, 23690, 95919, 388368, 1572470, 6366801, 25778651, 104375627, 422608286, 1711106017, 6928126822, 28051412820, 113577851765, 459867333397, 1861964820071, 7538941645566, 30524551550379, 123591386053472, 500411306007498, 2026124013786761
Offset: 0
From 4*a(2) = a(3) = 88 we get 88*7^(1/3) = 4*((c(1)/c(4))^(8/3) + (c(4)/c(2))^(8/3) + (c(2)/c(1))^(8/3))=(c(1)/c(4))^(11/3) + (c(4)/c(2))^(11/3) + (c(2)/c(1))^(11/3).
- R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,4,1).
-
I:=[2,5,22]; [n le 3 select I[n] else 3*Self(n-1) +4*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Nov 25 2022
-
LinearRecurrence[{3, 4, 1}, {2, 5, 22}, 40]
-
Vec((2-x-x^2)/(1-3*x-4*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016
-
@CachedFunction
def a(n): # a = A215100
if (n<3): return (2,5,22)[n]
else: return 3*a(n-1) + 4*a(n-2) + a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Nov 25 2022
A215560
a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=a(1)=3, a(2)=101.
Original entry on oeis.org
3, 3, 101, 444, 5981, 38468, 390974, 2948431, 26868565, 216624495, 1888775906, 15657923053, 134074085330, 1124375492334, 9556192325235, 80523923708399, 682280993578341, 5760499663646612, 48746948619251921, 411906111379078256, 3483838470286469746, 29447943482916260935
Offset: 0
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,46,1).
-
LinearRecurrence[{3, 46, 1}, {3, 3, 101}, 50]
-
Vec((3-6*x-46*x^2)/(1-3*x-46*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016
A215572
a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=106.
Original entry on oeis.org
2, 5, 106, 550, 6531, 44999, 435973, 3384404, 30252969, 246877464, 2135653370, 17793576423, 151867661753, 1276243154087, 10832435479322, 91356359187721, 773637352766062, 6534137016412674, 55281085635664595, 467187197014742851, 3951025667301212597, 33398969150217473532
Offset: 0
From 4*a(1)+5*a(2)=a(3) we obtain 4*((c(1)^4/c(2))^(5/3) + (c(2)^4/c(4))^(5/3) + (c(4)^4/c(1))^(5/3)) + 5*((c(1)^4/c(2))^(8/3) + (c(2)^4/c(4))^(8/3) + (c(4)^4/c(1))^(8/3)) = (4 + 5*c(1)^4/c(2))*((c(1)^4/c(2))^(5/3) + (4 + 5*c(2)^4/c(4))*((c(2)^4/c(4))^(5/3) + (4 + 5*c(4)^4/c(1))*((c(4)^4/c(1))^(5/3) = (c(1)^4/c(2))^(11/3) + (c(2)^4/c(4))^(11/3) + (c(4)^4/c(1))^(11/3) = 550*49^(1/3).
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,46,1).
-
LinearRecurrence[{3,46,1}, {2,5,106}, 50]
CoefficientList[Series[(2 - x - x^2)/(1 - 3*x - 46*x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
-
Vec((2-x-x^2)/(1-3*x-46*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016
Original entry on oeis.org
0, 1, 3, 9, 26, 74, 209, 588, 1651, 4631, 12983, 36388, 101972, 285741, 800660, 2243445, 6286059, 17613241, 49351342, 138279586, 387451077, 1085614208, 3041824015, 8523002359, 23880923183, 66912861640, 187485674652, 525323190505, 1471922876424, 4124236259529
Offset: 1
a(5) = 26 = 1*0 + 1*4 + 4*1 + 4*3 + 6*1 = 4 + 4 + 12 + 6 = 26.
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Andrew B. Hudson, Illustration of the first 7 terms as a spiral tiling of similar trapezoids.
- Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-1)
-
I:=[0,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 11 2019
-
LinearRecurrence[{4, -3, -1}, {0, 1, 3}, 40] (* Vincenzo Librandi, Jul 11 2019 *)
-
concat(0, Vec(x^2*(1-x)/(1-4*x+3*x^2+x^3) + O(x^50))) \\ Michel Marcus, Sep 13 2014
A181879
Expansion of x*(1+x)/(1-3*x-4*x^2-x^3).
Original entry on oeis.org
0, 1, 4, 16, 65, 263, 1065, 4312, 17459, 70690, 286218, 1158873, 4692181, 18998253, 76922356, 311452261, 1261044460, 5105864780, 20673224441, 83704176903, 338911293253, 1372223811812, 5556020785351, 22495868896554, 91083913642878, 368791237300201, 1493205235368669, 6045864568949689, 24479205885623944, 99114281168039257, 401305531615563236
Offset: 0
-
CoefficientList[Series[x (1+x)/(1-3x-4x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,4,1},{0,1,4},40] (* Harvey P. Dale, Feb 04 2024 *)
-
Vec((1+x)/(1-3*x-4*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
A181880
Expansion of 1/(1-4*x-3*x^2-x^3).
Original entry on oeis.org
1, 4, 19, 89, 417, 1954, 9156, 42903, 201034, 942001, 4414009, 20683073, 96916320, 454128508, 2127946065, 9971086104, 46722311119, 218930448853, 1025859814873, 4806952917170, 22524321562152, 105544004814991, 494555936863590, 2317380083461485, 10858732149251701, 50881624784254849, 238420075668235984, 1117183909174960184, 5234877488488803537, 24529481757148330684
Offset: 0
-
CoefficientList[Series[1/(1-4*x-3*x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,3,1},{1,4,19},40] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
A215569
a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=0, a(1)=14, a(2)=49.
Original entry on oeis.org
0, 14, 49, 791, 4641, 50358, 365351, 3417162, 27107990, 238878773, 1967021021, 16916594611, 141471629572, 1204545261843, 10138247340452, 85965295695706, 725459810009753, 6140921279372187, 51879880394260905, 438847479843913070, 3709157858947113027
Offset: 0
We have (c(1)^4/c(2))^(4/3) + (c(2)^4/c(4))^(4/3) + (c(4)^4/c(1))^(4/3) = (2/7)*(c(1)^4/c(2))^(7/3) + (c(2)^4/c(4))^(7/3) + (c(4)^4/c(1))^(7/3)).
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,46,1).
-
LinearRecurrence[{3,46,1},{0,14,49},30] (* Harvey P. Dale, Jan 12 2015 *)
Showing 1-10 of 13 results.
Comments