cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A244001 Indices of primes in A214830.

Original entry on oeis.org

3, 7, 11, 20, 28, 63, 72, 79, 688, 795, 999, 2716, 13220, 15940, 17903, 26832, 28416, 33448, 117923
Offset: 1

Views

Author

Robert Price, Jun 17 2014

Keywords

Comments

a(20) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,8,8}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A244002 Prime terms in A214830.

Original entry on oeis.org

17, 199, 2273, 547609, 71724269, 131339891338466303, 31640376596545867021, 2253137772896035203743
Offset: 1

Views

Author

Robert Price, Jun 17 2014

Keywords

Comments

a(10) has 182 digits and thus is too large to display here. It corresponds to A214830(688).

Crossrefs

Programs

  • Mathematica
    a={1,8,8}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A214829 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7.

Original entry on oeis.org

1, 7, 7, 15, 29, 51, 95, 175, 321, 591, 1087, 1999, 3677, 6763, 12439, 22879, 42081, 77399, 142359, 261839, 481597, 885795, 1629231, 2996623, 5511649, 10137503, 18645775, 34294927, 63078205, 116018907, 213392039, 392489151, 721900097, 1327781287, 2442170535
Offset: 0

Views

Author

Abel Amene, Aug 07 2012

Keywords

Comments

See comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,7,7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,7,7}, 40] (* G. C. Greubel, Apr 24 2019 *)
  • PARI
    Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017
    
  • Sage
    ((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1+6*x-x^2)/(1-x-x^2-x^3).
a(n) = -A000073(n) + 6*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019

A268410 a(n) = a(n - 1) + a(n - 2) + a(n - 3) for n>2, a(0)=5, a(1)=7, a(2)=9.

Original entry on oeis.org

5, 7, 9, 21, 37, 67, 125, 229, 421, 775, 1425, 2621, 4821, 8867, 16309, 29997, 55173, 101479, 186649, 343301, 631429, 1161379, 2136109, 3928917, 7226405, 13291431, 24446753, 44964589, 82702773, 152114115, 279781477, 514598365, 946493957
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

Tribonacci sequence beginning 5, 7, 9.
In general, the ordinary generating function for the recurrence relation b(n) = b(n-1) + b(n-2) + b(n-3), with n>2 and b(0)=k, b(1)=m, b(2)=q, is (k + (m-k)*x + (q-m-k)*x^2)/(1 - x - x^2 - x^3).

Crossrefs

Cf. similar sequences with initial values (p,q,r): A000073 (0,0,1), A081172 (1,1,0), A001590 (0,1,0; also 1,2,3), A214899 (2,1,2), A001644 (3,1,3), A145027 (2,3,4), A000213 (1,1,1), A141036 (2,1,1), A141523 (3,1,1), A214727 (1,2,2), A214825 (1,3,3), A214826 (1,4,4), A214827 (1,5,5), A214828 (1,6,6), A214829 (1,7,7), A214830 (1,8,8), A214831 (1,9,9).

Programs

  • GAP
    a:=[5,7,9];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    I:=[5,7,9]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    LinearRecurrence[{1, 1, 1}, {5, 7, 9}, 40]
    RecurrenceTable[{a[0]==5, a[1]==7, a[2]==9, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}]
  • PARI
    my(x='x+O('x^40)); Vec((5+2*x-3*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((5+2*x-3*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (5 + 2*x - 3*x^2)/(1 - x - x^2 - x^3).
a(n) = 3*K(n) - 4*T(n+1) + 8*T(n), where K(n) = A001644(n) and T(n) =A000073(n+1). - G. C. Greubel, Apr 23 2019
Showing 1-4 of 4 results.