A214854
Number of n-permutations that have exactly two square roots.
Original entry on oeis.org
0, 0, 1, 0, 3, 35, 0, 714, 2835, 35307, 236880, 3342350, 28879158, 461911086, 4916519608, 87798024300, 1112716544355, 21957112744083, 322944848419392, 6986165252185782, 116941654550250258, 2754405555107729418, 51688464405692879688
Offset: 0
a(5) = 35 because we have 20 5-permutations of the type (1,2,3)(4)(5) and 15 of the type (1,2)(3,4)(5). These have 2 square roots:(1,3,2)(4)(5),(1,3,2)(4,5) and (1,3,2,4)(5),(3,1,4,2)(5) respectively.
-
nn=22; a=Sum[Binomial[2n,n]/2x^(2n)/(2n)!, {n,2,nn,2}]; Range[0,nn]! CoefficientList[Series[(a(1+x)+x^2/2) ((1+x)/(1-x))^(1/2) Exp[-x], {x,0,nn}], x]
A349645
Triangular array read by rows: T(n,k) is the number of square n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 11, 0, 1, 0, 24, 0, 35, 0, 1, 0, 0, 184, 0, 85, 0, 1, 0, 720, 0, 994, 0, 175, 0, 1, 0, 0, 9708, 0, 4249, 0, 322, 0, 1, 0, 40320, 0, 72764, 0, 14889, 0, 546, 0, 1, 0, 0, 648576, 0, 402380, 0, 44373, 0, 870, 0, 1
Offset: 0
The three square 3-permutations are (1, 2, 3) with three cycles (fixed points) and (3, 1, 2) & (2, 3, 1), each with one cycle.
Among the twelve square 4-permutations are {1, 4, 2, 3} & {1, 3, 4, 2} and {3, 4, 1, 2} & {4, 3, 2, 1}, all with two cycles but differing types.
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 2, 0, 1;
[4] 0, 0, 11, 0, 1;
[5] 0, 24, 0, 35, 0, 1;
[6] 0, 0, 184, 0, 85, 0, 1;
[7] 0, 720, 0, 994, 0, 175, 0, 1;
[8] 0, 0, 9708, 0, 4249, 0, 322, 0, 1;
...
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(i, 2)=0 and irem(j, 2)=1, 0, (i-1)!^j*
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1))*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Nov 23 2021
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 1, 0, (i-1)!^j*multinomial[n,
Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]]*x^j, {j, 0, n/i}]]]];
T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Showing 1-2 of 2 results.
Comments