cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214887 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 7, 49, 343, 16807, 5764801, 96889010407, 558545864083284007, 54116956037952111668959660849, 30226801971775055948247051683954096612865741943
Offset: 0

Views

Author

Vincenzo Librandi, Aug 01 2012

Keywords

Comments

a(17) has 1350 digits.
From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 6*sum {n = 1..inf} 1/7^floor(n*phi) (= 36*sum {n = 1..inf} floor(n/phi)/7^n) = 0.87718 67194 00499 51922 ... = 1/(1 + 1/(7 + 1/(7 + 1/(49 + 1/(343 + 1/(16807 + 1/(5764801 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/7^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [7^Fibonacci(n): n in [0..10]];
  • Maple
    a:= n-> 7^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    7^Fibonacci[Range[0,10]]
    nxt[{a_,b_}]:={b,a*b}; Transpose[NestList[nxt,{1,7},10]][[1]] (* Harvey P. Dale, Jun 10 2014 *)

Formula

a(n) = 7^Fibonacci(n).