A214887 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=7.
1, 7, 7, 49, 343, 16807, 5764801, 96889010407, 558545864083284007, 54116956037952111668959660849, 30226801971775055948247051683954096612865741943
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..16
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
Crossrefs
Programs
-
Magma
[7^Fibonacci(n): n in [0..10]];
-
Maple
a:= n-> 7^(<<1|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..12); # Alois P. Heinz, Jun 17 2014
-
Mathematica
7^Fibonacci[Range[0,10]] nxt[{a_,b_}]:={b,a*b}; Transpose[NestList[nxt,{1,7},10]][[1]] (* Harvey P. Dale, Jun 10 2014 *)
Formula
a(n) = 7^Fibonacci(n).
Comments