cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215004 a(0) = a(1) = 1; for n>1, a(n) = a(n-1) + a(n-2) + floor(n/2).

Original entry on oeis.org

1, 1, 3, 5, 10, 17, 30, 50, 84, 138, 227, 370, 603, 979, 1589, 2575, 4172, 6755, 10936, 17700, 28646, 46356, 75013, 121380, 196405, 317797, 514215, 832025, 1346254, 2178293, 3524562, 5702870, 9227448, 14930334, 24157799, 39088150, 63245967, 102334135, 165580121
Offset: 0

Views

Author

Alex Ratushnyak, Jul 31 2012

Keywords

Comments

If the first two terms are {0,1}, we get A020956 except for the first term.
If the first two terms are {1,2}, we get A281362.

Crossrefs

Cf. A020956, except for first term: same formula, seed {0,1}.

Programs

  • Magma
    [Fibonacci(n+3)-(2*n+5-(-1)^n)/4: n in [0..40]]; // _G. C. Greubel, Feb 01 2018
    
  • Mathematica
    Table[((-1)^n - 2 n + 8 Fibonacci[n] + 4 LucasL[n] - 5)/4, {n, 0, 20}] (* Vladimir Reshetnikov, May 18 2016 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+a[n-2]+Floor[n/2]},a,{n,40}] (* or *) LinearRecurrence[{2,1,-3,0,1},{1,1,3,5,10},40] (* Harvey P. Dale, Jul 11 2020 *)
  • PARI
    Vec(-(x^3-x+1)/((x-1)^2*(x+1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2015
    
  • PARI
    a(n)=([0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;1,0,-3,1,2]^n* [1;1;3;5;10])[1,1] \\ Charles R Greathouse IV, Jan 16 2017
    
  • Python
    prpr = prev = 1
    for n in range(2,100):
        print(prpr, end=', ')
        curr = prpr+prev + n//2
        prpr = prev
        prev = curr
    
  • SageMath
    [fibonacci(n+3) -(n+2+(n%2))//2 for n in range(41)] # G. C. Greubel, Apr 05 2024

Formula

From Colin Barker, Sep 16 2015: (Start)
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5) for n>4.
G.f.: (1-x+x^3) / ((1-x)^2*(1+x)*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) - floor((n+3)/2). - Nathan Fox, Jan 27 2017
a(n) = (-3/4 + (-1)^n/4 + (2^(-n)*((1-t)^n*(-2+t) + (1+t)^n*(2+t)))/t + (-1-n)/2) where t=sqrt(5). - Colin Barker, Feb 09 2017
From G. C. Greubel, Apr 05 2024: (Start)
a(n) = Fibonacci(n+3) - (1/4)*(2*n + 5 - (-1)^n).
E.g.f.: 2*exp(x/2)*( cosh(sqrt(5)*x/2) + (2/sqrt(5))*sinh(sqrt(5)*x/2) ) - (1/2)*( (x+2)*cosh(x) + (x+3)*sinh(x) ). (End)