A280523 a(n) = Fibonacci(2n + 1) - n.
1, 3, 10, 30, 84, 227, 603, 1589, 4172, 10936, 28646, 75013, 196405, 514215, 1346254, 3524562, 9227448, 24157799, 63245967, 165580121, 433494416, 1134903148, 2971215050, 7778742025, 20365011049, 53316291147, 139583862418
Offset: 1
Examples
a(1) = 1 because A280521(1) = 1; a(2) = 3 because A280521(3) = 2; a(3) = 10 because A280521(10) = 3; a(4) = 30 because A280521(30) = 4; a(5) = 84 because A280521(84) = 5; a(6) = 227 because A280521(227) = 6; a(7) = 603 because A280521(603) = 7; a(8) = 1589 because A280521(1589) = 8.
Links
- Nathan Fox, Proof that a(n) = Fibonacci(2n + 1) - n.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2
- Index entries for linear recurrences with constant coefficients, signature (5,-8,5,-1).
Programs
-
Mathematica
Table[Fibonacci[2n + 1] - n, {n, 30}] (* Alonso del Arte, Jan 29 2017 *) LinearRecurrence[{5,-8,5,-1},{1,3,10,30},30] (* Harvey P. Dale, Feb 06 2024 *)
-
PARI
F=vector(64,n,fibonacci(n+2)-1); \\ Resize as needed A280521(n)=my(s); while(n, s++; t=setsearch(F,n,1); if(t, n-=F[t-1], return(s))); s first(n)=my(v=vector(n),k,t,mn=1,gaps=n); while(gaps, t=A280521(k++); if(t>=mn && t<=n && v[t]==0, v[t]=k; while(mn<=n && v[mn], mn++); print("a("t") = "k); gaps--)); v \\ Charles R Greathouse IV, Jan 04 2017
Formula
G.f.: -x*(-1+2*x-3*x^2+x^3) / ( (x^2-3*x+1)*(x-1)^2 ). - R. J. Mathar, Mar 11 2017
a(n) = 5*a(n-1)-8*a(n-2)+5*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 26 2021
Extensions
Corrected and extended by Charles R Greathouse IV, Jan 04 2017
a(26) from Charles R Greathouse IV, Jan 09 2017
a(27) from Charles R Greathouse IV, Jan 16 2017
Replaced old definition by simple formula established by Nathan Fox. - N. J. A. Sloane, Jan 30 2017
Comments