cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109128 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 for 0

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 11, 7, 1, 1, 9, 19, 19, 9, 1, 1, 11, 29, 39, 29, 11, 1, 1, 13, 41, 69, 69, 41, 13, 1, 1, 15, 55, 111, 139, 111, 55, 15, 1, 1, 17, 71, 167, 251, 251, 167, 71, 17, 1, 1, 19, 89, 239, 419, 503, 419, 239, 89, 19, 1, 1, 21, 109, 329, 659, 923, 923, 659, 329, 109, 21, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 20 2005

Keywords

Comments

Eigensequence of the triangle = A001861. - Gary W. Adamson, Apr 17 2009

Examples

			Triangle begins as:
  1;
  1   1;
  1   3   1;
  1   5   5   1;
  1   7  11   7   1;
  1   9  19  19   9   1;
  1  11  29  39  29  11   1;
  1  13  41  69  69  41  13   1;
  1  15  55 111 139 111  55  15   1;
  1  17  71 167 251 251 167  71  17   1;
  1  19  89 239 419 503 419 239  89  19   1;
		

Crossrefs

Cf. A000325 (row sums).
Sequence m*binomial(n,k) - (m-1): A007318 (m=1), this sequence (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), A168625 (m=8).

Programs

  • Haskell
    a109128 n k = a109128_tabl !! n !! k
    a109128_row n = a109128_tabl !! n
    a109128_tabl = iterate (\row -> zipWith (+)
       ([0] ++ row) (1 : (map (+ 1) $ tail row) ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [2*Binomial(n,k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A109128 := proc(n,k)
        2*binomial(n,k)-1 ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[2*Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[2*binomial(n,k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 with T(n,0) = T(n,n) = 1.
Sum_{k=0..n} T(n, k) = A000325(n+1) (row sums).
T(n, k) = 2*binomial(n,k) - 1. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Sep 30 2007
T(n, 1) = 2*n - 1 = A005408(n+1) for n>0.
T(n, 2) = n^2 + n - 1 = A028387(n-2) for n>1.
T(n, k) = Sum_{j=0..n-k} C(n-k,j)*C(k,j)*(2 - 0^j) for k <= n. - Paul Barry, Apr 27 2006
T(n,k) = A014473(n,k) + A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 10 2012
From G. C. Greubel, Apr 06 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n, n) = A134760(n).
T(2*n-1, n) = A030662(n), for n >= 1.
Sum_{k=0..n-1} T(n, k) = A000295(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*[n=0] - A000035(n+1).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A327767(n), for n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A281362(n).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A281362(n-1) - (1+(-1)^n)/2 for n >= 1.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) is the repeating pattern {1,1,0,-2,-3,-1,2,2,-1,-3,-2,0} with b(n) = b(n-12). (End)

Extensions

Offset corrected by Reinhard Zumkeller, Apr 10 2012

A020956 a(n) = Sum_{k>=1} floor(tau^(n-k)) where tau is A001622.

Original entry on oeis.org

1, 2, 4, 8, 14, 25, 42, 71, 117, 193, 315, 514, 835, 1356, 2198, 3562, 5768, 9339, 15116, 24465, 39591, 64067, 103669, 167748, 271429, 439190, 710632, 1149836, 1860482, 3010333, 4870830, 7881179, 12752025, 20633221, 33385263, 54018502, 87403783, 141422304
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,2,4,8,14]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-2)-3*Self(n-3)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Nov 01 2016
    
  • Magma
    [Lucas(n+1)-(2*n+5-(-1)^n)/4: n in [1..40]]; // G. C. Greubel, Apr 05 2024
    
  • Mathematica
    LinearRecurrence[{2,1,-3,0,1}, {1,2,4,8,14}, 40] (* Vincenzo Librandi, Nov 01 2016 *)
  • PARI
    Vec(x*(1-x^2+x^3)/((1-x-x^2)*(1+x)*(1-x)^2) + O(x^50)) \\ Michel Marcus, Nov 01 2016
    
  • Python
    prpr = 0
    prev = 1
    for n in range(2,100):
        print(prev, end=", ")
        curr = prpr+prev + n//2
        prpr = prev
        prev = curr
    # Alex Ratushnyak, Jul 30 2012
    
  • SageMath
    [lucas_number2(n+1,1,-1) -(n+2+(n%2))//2 for n in range(1,41)] # G. C. Greubel, Apr 05 2024

Formula

G.f.: x*(1-x^2+x^3)/((1-x-x^2)*(1+x)*(1-x)^2). - Ralf Stephan, Apr 08 2004
a(n) = Lucas(n+1) - floor(n/2) - 1.
a(n) = Sum_{k=0..n-1} A014217(k).
a(n) = 2^(-2-n)*((-2)^n - 5*2^n + 2*(1-t)^(1+n) + 2*(1+t)^n + 2*t*(1+t)^n - 2^(1+n)*n) where t=sqrt(5). - Colin Barker, Feb 09 2017
From G. C. Greubel, Apr 05 2024: (Start)
a(n) = Lucas(n+1) - (1/4)*(2*n + 5 - (-1)^n).
E.g.f.: exp(x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)) - (1/2)*((x+2)*cosh(x) + (x+3)*sinh(x)). (End)

Extensions

More terms from Vladeta Jovovic, Apr 04 2002

A215004 a(0) = a(1) = 1; for n>1, a(n) = a(n-1) + a(n-2) + floor(n/2).

Original entry on oeis.org

1, 1, 3, 5, 10, 17, 30, 50, 84, 138, 227, 370, 603, 979, 1589, 2575, 4172, 6755, 10936, 17700, 28646, 46356, 75013, 121380, 196405, 317797, 514215, 832025, 1346254, 2178293, 3524562, 5702870, 9227448, 14930334, 24157799, 39088150, 63245967, 102334135, 165580121
Offset: 0

Views

Author

Alex Ratushnyak, Jul 31 2012

Keywords

Comments

If the first two terms are {0,1}, we get A020956 except for the first term.
If the first two terms are {1,2}, we get A281362.

Crossrefs

Cf. A020956, except for first term: same formula, seed {0,1}.

Programs

  • Magma
    [Fibonacci(n+3)-(2*n+5-(-1)^n)/4: n in [0..40]]; // _G. C. Greubel, Feb 01 2018
    
  • Mathematica
    Table[((-1)^n - 2 n + 8 Fibonacci[n] + 4 LucasL[n] - 5)/4, {n, 0, 20}] (* Vladimir Reshetnikov, May 18 2016 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+a[n-2]+Floor[n/2]},a,{n,40}] (* or *) LinearRecurrence[{2,1,-3,0,1},{1,1,3,5,10},40] (* Harvey P. Dale, Jul 11 2020 *)
  • PARI
    Vec(-(x^3-x+1)/((x-1)^2*(x+1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2015
    
  • PARI
    a(n)=([0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;1,0,-3,1,2]^n* [1;1;3;5;10])[1,1] \\ Charles R Greathouse IV, Jan 16 2017
    
  • Python
    prpr = prev = 1
    for n in range(2,100):
        print(prpr, end=', ')
        curr = prpr+prev + n//2
        prpr = prev
        prev = curr
    
  • SageMath
    [fibonacci(n+3) -(n+2+(n%2))//2 for n in range(41)] # G. C. Greubel, Apr 05 2024

Formula

From Colin Barker, Sep 16 2015: (Start)
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5) for n>4.
G.f.: (1-x+x^3) / ((1-x)^2*(1+x)*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) - floor((n+3)/2). - Nathan Fox, Jan 27 2017
a(n) = (-3/4 + (-1)^n/4 + (2^(-n)*((1-t)^n*(-2+t) + (1+t)^n*(2+t)))/t + (-1-n)/2) where t=sqrt(5). - Colin Barker, Feb 09 2017
From G. C. Greubel, Apr 05 2024: (Start)
a(n) = Fibonacci(n+3) - (1/4)*(2*n + 5 - (-1)^n).
E.g.f.: 2*exp(x/2)*( cosh(sqrt(5)*x/2) + (2/sqrt(5))*sinh(sqrt(5)*x/2) ) - (1/2)*( (x+2)*cosh(x) + (x+3)*sinh(x) ). (End)
Showing 1-3 of 3 results.