A215008 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)=5.
0, 1, 5, 21, 84, 329, 1274, 4900, 18767, 71687, 273371, 1041348, 3964051, 15083082, 57374296, 218205281, 829778397, 3155194917, 11996903828, 45614046737, 173428037986, 659377938380, 2506951364015, 9531364676687, 36237879209259, 137774708539300, 523812203582283, 1991504659990594
Offset: 0
Examples
We have a(6)<a(8), but the following amazing equality holds: (s(1))^6/s(2) + (s(4))^6/s(1) + (s(2))^6/s(4) = (s(1))^8/s(2) + (s(4))^8/s(1) + (s(2))^8/s(4) = -21*sqrt(7)/32. It can be also proved that (s(1))^3/s(2) + (s(4))^3/s(1) + (s(2))^3/s(4) = (s(1))^5/s(2) + (s(4))^5/s(1) + (s(2))^5/s(4) = (s(1))^7/s(2) + (s(4))^7/s(1) + (s(2))^7/s(4).
References
- R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).
- R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt and A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt and L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- D. Y. Savio and E. R. Suryanarayan, Chebyshev Polynomials and Regular Polygons, Amer. Math. Monthly, 100 (1993), 657-661.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Roman Wituła, P. Lorenc, M. Różański, and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
Crossrefs
Cf. A215007.
Programs
-
GAP
a:=[0,1,5];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
-
Magma
I:=[0,1,5]; [n le 3 select I[n] else 7*(Self(n-1) -2*Self(n-2) + Self(n-3)): n in [1..30]]; // G. C. Greubel, Feb 01 2018
-
Maple
seq(coeff(series(x*(1-2*x)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 03 2019
-
Mathematica
LinearRecurrence[{7,-14,7},{0,1,5},30] CoefficientList[Series[x (1-2x)/(1-7x+14x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 01 2021 *)
-
PARI
concat([0], Vec((x-2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^30))) \\ Charles R Greathouse IV, Sep 27 2012
-
Sage
def A215008_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x*(1-2*x)/(1-7*x+14*x^2-7*x^3)).list() A215008_list(30) # G. C. Greubel, Oct 03 2019
Formula
G.f.: x*(1-2*x)/(1-7*x+14*x^2-7*x^3).
a(n+1) - 2*a(n) = (1/sqrt(7))*Sum_{k=0,1,2} cot(2^k * alpha) * (2*sin(2^k * alpha))^(2n), where alpha = 2*Pi/7. - Roman Witula, May 16 2014
Comments