cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215008 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)=5.

Original entry on oeis.org

0, 1, 5, 21, 84, 329, 1274, 4900, 18767, 71687, 273371, 1041348, 3964051, 15083082, 57374296, 218205281, 829778397, 3155194917, 11996903828, 45614046737, 173428037986, 659377938380, 2506951364015, 9531364676687, 36237879209259, 137774708539300, 523812203582283, 1991504659990594
Offset: 0

Views

Author

Roman Witula, Jul 31 2012

Keywords

Comments

The Berndt-type sequence number 2 for argument 2*Pi/7 is defined by the following relation: a(n) = -(2^(2*n-1)/sqrt(7))*((s(1))^(2*n)/s(2) + (s(4))^(2*n)/s(1) + (s(2))^(2*n)/s(4)), where s(j) := sin(2*Pi*j/7) - see also sequence A215007. This sequence was motivated by Berndt's et al. papers.
We note that a(n) = A002054(n) for n=0,1,...,4, and A002054(5) - a(5) = 1. Moreover, we have a(n+1)=A026027(n) for n=0,...,6, and A026027(7) - a(8) = 1. The characteristic polynomial of a(n) has the form x^3 -7*x^2 +14*x -7 = (x-(2*s(1))^2)*(x-(2*s(2))^2)*(x-(2*s(4))^2) and was known to Johannes Kepler (1571-1630) - see Witula's book and Savio-Suryanarayan's paper.

Examples

			We have a(6)<a(8), but the following amazing equality holds:
  (s(1))^6/s(2) + (s(4))^6/s(1) + (s(2))^6/s(4) = (s(1))^8/s(2) + (s(4))^8/s(1) + (s(2))^8/s(4) = -21*sqrt(7)/32.
It can be also proved that
  (s(1))^3/s(2) + (s(4))^3/s(1) + (s(2))^3/s(4) = (s(1))^5/s(2) + (s(4))^5/s(1) + (s(2))^5/s(4) = (s(1))^7/s(2) + (s(4))^7/s(1) + (s(2))^7/s(4).
		

References

  • R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).
  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Cf. A215007.

Programs

  • GAP
    a:=[0,1,5];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
  • Magma
    I:=[0,1,5]; [n le 3 select I[n] else 7*(Self(n-1) -2*Self(n-2) + Self(n-3)): n in [1..30]]; // G. C. Greubel, Feb 01 2018
    
  • Maple
    seq(coeff(series(x*(1-2*x)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 03 2019
  • Mathematica
    LinearRecurrence[{7,-14,7},{0,1,5},30]
    CoefficientList[Series[x (1-2x)/(1-7x+14x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 01 2021 *)
  • PARI
    concat([0], Vec((x-2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^30))) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    def A215008_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-2*x)/(1-7*x+14*x^2-7*x^3)).list()
    A215008_list(30) # G. C. Greubel, Oct 03 2019
    

Formula

G.f.: x*(1-2*x)/(1-7*x+14*x^2-7*x^3).
a(n+1) - 2*a(n) = (1/sqrt(7))*Sum_{k=0,1,2} cot(2^k * alpha) * (2*sin(2^k * alpha))^(2n), where alpha = 2*Pi/7. - Roman Witula, May 16 2014
a(n) = A217274(n) - 2*A217274(n-1). - R. J. Mathar, Feb 05 2020