A215007
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=1, a(1)=3, a(2)=9.
Original entry on oeis.org
1, 3, 9, 28, 91, 308, 1078, 3871, 14161, 52479, 196196, 737793, 2785160, 10540390, 39955041, 151615947, 575723785, 2187128524, 8311078307, 31587815308, 120069510526, 456434707519, 1735184512425, 6596692255391, 25079305566420
Offset: 0
- R. Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt and A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt and L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- R. Wituła, P. Lorenc, M. Różański, and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014.
- Index entries for linear recurrences with constant coefficients, signature (7, -14, 7).
-
a:=[1,3,9];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3))); // G. C. Greubel, Feb 01 2018
-
seq(coeff(series((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 03 2019
-
LinearRecurrence[{7,-14,7}, {1,3,9}, 30] (* G. C. Greubel, Feb 01 2018 *)
-
Vec((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012
-
def A215007_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)).list()
A215007_list(30) # G. C. Greubel, Oct 03 2019
A108716
a(n) = tan(Pi/14)^(-2n) + tan(3*Pi/14)^(-2n) + tan(5*Pi/14)^(-2n).
Original entry on oeis.org
3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173, 18434276035, 353858266965, 6792546291251, 130387472704741, 2502874814474531, 48044357383337973, 922243598852422035, 17703083191185355397
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..700
- Michel Bataille and Li Zhou, A Combinatorial Sum Goes on Tangent, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations (2013).
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations [Local copy]
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (21,-35,7).
-
A:= gfun:-rectoproc({-a(n+3)+21*a(n+2)-35*a(n+1)+7*a(n), a(0) = 3, a(1) = 21, a(2) = 371},a(n), remember):
seq(A(n),n=0..20); # Robert Israel, Aug 23 2015
-
Table[ Round[ Cot[Pi/14]^(2n) + Cot[3Pi/14]^(2n) + Cot[5Pi/14]^(2n)], {n, 0, 12}] (* Robert G. Wilson v, Jun 21 2005 *)
RecurrenceTable[{a[0]== 3, a[1]== 21, a[2]==371, a[n]== 21*a[n-1] - 35*a[n-2] + 7*a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 22 2015 *)
-
a(n)=round(tan(Pi/14)^(-2*n) + tan(3*Pi/14)^(-2*n) + tan(5*Pi/14)^(-2*n)); \\ Anders Hellström, Aug 22 2015
A033304
Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).
Original entry on oeis.org
2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450
Offset: 0
- R. P. Stanley, Enumerative Combinatorics I, p. 244, Eq. (36).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv:1502.03085 [math.NT], 2015 (see p. 40).
- L. E. Jeffery, Unit-primitive matrices
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
Cf.
A215007,
A215008,
A215143,
A215493,
A215494,
A215510,
A215512,
A215575,
A215694,
A215695,
A108716,
A215794,
A215828,
A215817,
A215877,
A094429,
A094430,
A217274,
A094648.
-
I:=[2,6,11]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
-
CoefficientList[Series[(2+2x-3x^2)/(1-2x-x^2+x^3),{x,0,50}], x] (* Harvey P. Dale, Mar 14 2011 *)
LinearRecurrence[{2, 1, -1}, {2, 6, 11}, 29] (* Jean-François Alcover, Sep 27 2017 *)
-
{a(n)=if(n<0, n=-n; polsym(x^3-x^2-2*x+1,n-1)[n], n+=2; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
-
x='x+O('x^99); Vec((2+2*x-3*x^2)/(1-2*x-x^2+x^3)) \\ Altug Alkan, Apr 19 2018
A094648
An accelerator sequence for Catalan's constant.
Original entry on oeis.org
3, -1, 5, -4, 13, -16, 38, -57, 117, -193, 370, -639, 1186, -2094, 3827, -6829, 12389, -22220, 40169, -72220, 130338, -234609, 423065, -761945, 1373466, -2474291, 4459278, -8034394, 14478659, -26088169, 47011093, -84708772, 152642789, -275049240
Offset: 0
We have a(17) = a(19) + 50000, a(4) + a(5) = -3, 2*a(7) + a(8) = 3, and 2*a(9) + a(10) = a(5). - _Roman Witula_, Sep 14 2012
- G. C. Greubel, Table of n, a(n) for n = 0..3900
- A. Akbary and Q. Wang, On some permutation polynomials over finite fields, International Journal of Mathematics and Mathematical Sciences, 2005:16 (2005) 2631-2640.
- A. Akbary and Q. Wang, A generalized Lucas sequence and permutation binomials, Proceeding of the American Mathematical Society, 134 (1) (2006), 15-22.
- David M. Bradley, A Class of Series Acceleration Formulae for Catalan's Constant, The Ramanujan Journal, Vol. 3, Issue 2, 1999, pp. 159-173
- David M. Bradley, A Class of Series Acceleration Formulae for Catalan's Constant, arXiv:0706.0356 [math.CA], 2007.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (-1,2,1).
Cf.
A215007,
A215008,
A215143,
A215493,
A215494,
A215510,
A215512,
A215575,
A215694,
A215695,
A108716,
A215794,
A215828,
A215817,
A215877,
A094429,
A094430,
A217274.
-
I:=[3,-1,5]; [n le 3 select I[n] else -Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
-
CoefficientList[ Series[(3 + 2x - 2x^2)/(1 + x - 2x^2 - x^3), {x, 0, 33}], x] (* Robert G. Wilson v, May 24 2004 *)
a[n_] := Round[(2Sin[3Pi/14])^n + (-2Sin[Pi/14])^n + (-2Cos[Pi/7])^n]; Table[ a[n], {n, 0, 33}] (* Robert G. Wilson v, May 24 2004 *)
LinearRecurrence[{-1,2,1}, {3,-1,5}, 50] (* Roman Witula, Aug 09 2012 *)
-
x='x+O('x^30); Vec((3+2*x-2*x^2)/(1+x-2*x^2-x^3)) \\ G. C. Greubel, May 09 2018
A215575
a(n) = 7*(a(n-1) - a(n-2) - a(n-3)), with a(0)=3, a(1)=7, a(2)=35.
Original entry on oeis.org
3, 7, 35, 175, 931, 5047, 27587, 151263, 830403, 4560871, 25054435, 137642127, 756187747, 4154438295, 22824258947, 125395430335, 688917131651, 3784882096583, 20793986742179, 114241312597615, 627637106311971, 3448212648805239, 18944339609269571
Offset: 0
We have cot(2*Pi/7)^2 + cot(4*Pi/7)^2 + cot(8*Pi/7)^2 = 5, cot(2*Pi/7)^4 + cot(4*Pi/7)^4 + cot(8*Pi/7)^4 = 19, but cot(2*Pi/7)^6 + cot(4*Pi/7)^6 + cot(8*Pi/7)^6 = 563/7. Similarly the numbers sqrt(7)*(cot(2*Pi/7)^n + cot(4*Pi/7)^n + cot(8*Pi/7)^n) are integers for n=1,3,5,7 (equal to 7, 25, 103, 441, respectively), whereas for n=9 we obtain the rational value 13297/7.
- E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.
- G. C. Greubel, Table of n, a(n) for n = 0..1350
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- R. Witula, P. Lorenc, M. Rozanski, M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014.
- Index entries for linear recurrences with constant coefficients, signature (7, -7, -7).
-
I:=[3,7,35]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) - 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2017
-
LinearRecurrence[{7,-7,-7}, {3,7,35}, 50]
-
polsym(x^3 - 7*x^2 + 7*x + 7, 30) \\ Charles R Greathouse IV, Jul 20 2016
A215143
a(n) = 7*a(n-1) -14*a(n-2) +7*a(n-3), with a(0)=1, a(1)=2, a(2)=7.
Original entry on oeis.org
1, 2, 7, 28, 112, 441, 1715, 6615, 25382, 97069, 370440, 1411788, 5375839, 20458921, 77833217, 296038498, 1125816895, 4281011812, 16277915640, 61891962377, 235320000363, 894697938743, 3401649302758, 12933013979445, 49170893188704, 186945601728004, 710757805310287
Offset: 0
- R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
-
I:=[1,2,7]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
-
LinearRecurrence[{7,-14,7},{1,2,7},40]
-
Vec((1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3) + O(x^30)) \\ Michel Marcus, Apr 19 2016
A215493
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4.
Original entry on oeis.org
0, 1, 4, 14, 49, 175, 637, 2352, 8771, 32928, 124166, 469567, 1779141, 6749211, 25623472, 97329337, 369821228, 1405502182, 5342323441, 20307982135, 77201862045, 293497548512, 1115812645899, 4242135876440, 16128056932078, 61317184775679, 233122447515741
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
-
I:=[0,1,4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
-
LinearRecurrence[{7,-14,7}, {0,1,4}, 50]
-
x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018
A215494
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(1)=7, a(2)=21, a(3)=70.
Original entry on oeis.org
7, 21, 70, 245, 882, 3234, 12005, 44933, 169099, 638666, 2417807, 9167018, 34790490, 132119827, 501941055, 1907443237, 7249766678, 27557748813, 104759610858, 398257159370, 1514069805269, 5756205681709, 21884262613787, 83201447389466, 316323894905207
Offset: 1
We have a(3)=5*7^2 and a(6)=5*7^4, which implies that s(1)^12 + s(2)^12 + s(4)^12 = 49*(s(1)^6 + s(2)^6 + s(4)^6). We also have a(9) = (a(1) + a(3))*7^49.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- L. Bankoff and J. Garfunkel, The Heptagonal Triangle, Math. Magazine, 46 (1973), 7-19.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- D. Y. Savio and E. R. Suryanarayan, Chebyshev polynomials and regular polygons, Amer. Math. Monthly, 100 (1993), 657-661.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (7, -14, 7).
-
I:=[7,21,70]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 01 2016
-
LinearRecurrence[{7,-14,7}, {7,21,70}, 50]
-
polsym(x^3 - 7*x^2 + 14*x - 7, 30) \\ (includes a(0)=3) Joerg Arndt, May 31 2017
-
x='x+O('x^30); Vec((7-28*x+21*x^2)/(1-7*x+14*x^2-7*x^3)) \\ G. C. Greubel, Apr 23 2018
A215510
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=7, a(2)=35.
Original entry on oeis.org
0, 7, 35, 147, 588, 2303, 8918, 34300, 131369, 501809, 1913597, 7289436, 27748357, 105581574, 401620072, 1527436967, 5808448779, 22086364419, 83978326796, 319298327159, 1213996265902, 4615645568660, 17548659548105, 66719552736809, 253665154464813
Offset: 0
We have (1-7*x+14*x^2-7*x^3)*(a(1)*x + a(3)*x^2 + a(5)*x^3 + ...) = b(1)*x - b(2)*x^2 + b(3)*x^3 - b(4)*x^4 + (b(5)-2b(2))*x^5 + ..., where b(n)=A094430(n) for n=1,...,5.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
-
I:=[0,7,35]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
-
LinearRecurrence[{7,-14,7}, {0,7,35}, 50]
-
x='x+O('x^30); concat([0], Vec((7*x-14*x^2)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018
A215455
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3), with a(0)=3, a(1)=6 and a(2)=18.
Original entry on oeis.org
3, 6, 18, 57, 186, 621, 2109, 7251, 25146, 87726, 307293, 1079370, 3798309, 13382817, 47191491, 166501902, 587670810, 2074699233, 7325660010, 25869337773, 91359785781, 322660334739, 1139593274178, 4024976418198, 14216179376325, 50211881768346, 177350652641349
Offset: 0
From the identity c(j)^2 = 2 + c(2*j) we deduce that a(1)=6 is equivalent with c(2) + c(4) + c(8) = 0, where c(j) := 2*cos(Pi*j/9).
-
LinearRecurrence[{6,-9,1}, {3,6,18}, 50]
-
Vec((3-12*x+9*x^2)/(1-6*x+9*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
Showing 1-10 of 18 results.
Comments