A108716 a(n) = tan(Pi/14)^(-2n) + tan(3*Pi/14)^(-2n) + tan(5*Pi/14)^(-2n).
3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173, 18434276035, 353858266965, 6792546291251, 130387472704741, 2502874814474531, 48044357383337973, 922243598852422035, 17703083191185355397
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..700
- Michel Bataille and Li Zhou, A Combinatorial Sum Goes on Tangent, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations (2013).
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations [Local copy]
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (21,-35,7).
Crossrefs
Programs
-
Maple
A:= gfun:-rectoproc({-a(n+3)+21*a(n+2)-35*a(n+1)+7*a(n), a(0) = 3, a(1) = 21, a(2) = 371},a(n), remember): seq(A(n),n=0..20); # Robert Israel, Aug 23 2015
-
Mathematica
Table[ Round[ Cot[Pi/14]^(2n) + Cot[3Pi/14]^(2n) + Cot[5Pi/14]^(2n)], {n, 0, 12}] (* Robert G. Wilson v, Jun 21 2005 *) RecurrenceTable[{a[0]== 3, a[1]== 21, a[2]==371, a[n]== 21*a[n-1] - 35*a[n-2] + 7*a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 22 2015 *)
-
PARI
a(n)=round(tan(Pi/14)^(-2*n) + tan(3*Pi/14)^(-2*n) + tan(5*Pi/14)^(-2*n)); \\ Anders Hellström, Aug 22 2015
Formula
a(n) = 7^n*A(2n), where A(n) := A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, and A(2)=3. - see Witula-Slota's (Section 6) and Witula's (Remark 11) papers for the proofs and details. In these papers A(n) denotes the value of the big omega function with index n for the argument 2*i/sqrt(7) (see also A215512). - Roman Witula, Aug 23 2012
Conjecture: a(n) = 21*a(n-1)-35*a(n-2)+7*a(n-3). G.f.: -(35*x^2-42*x+3) / (7*x^3-35*x^2+21*x-1). - Colin Barker, Jun 01 2013
To verify conjecture, note that the roots of 7*x^3-35*x^2+21*x-1 are tan(Pi/14)^2, tan(3*Pi/14)^2 and tan(5*Pi/14)^2. - Robert Israel, Aug 23 2015
E.g.f.: exp((tan(Pi/7))^2*x) + exp((cot(Pi/14))^2*x) + exp((cot(3*Pi/14))^2*x). - G. C. Greubel, Aug 22 2015
a(n) = (tan(1*Pi/7))^(2*n) + (tan(2*Pi/7))^(2*n) + (tan(3*Pi/7))^(2*n). - Bernard Schott, Apr 22 2022
Extensions
More terms from Robert G. Wilson v, Jun 21 2005
Comments