cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A215575 a(n) = 7*(a(n-1) - a(n-2) - a(n-3)), with a(0)=3, a(1)=7, a(2)=35.

Original entry on oeis.org

3, 7, 35, 175, 931, 5047, 27587, 151263, 830403, 4560871, 25054435, 137642127, 756187747, 4154438295, 22824258947, 125395430335, 688917131651, 3784882096583, 20793986742179, 114241312597615, 627637106311971, 3448212648805239, 18944339609269571
Offset: 0

Views

Author

Roman Witula, Aug 16 2012

Keywords

Comments

The Berndt-type sequence number 8 for the argument 2Pi/7 defined by trigonometric relations from "Formula" below.
We note that the following decompositions hold true: (X-cot(2*Pi/7)^n)*(X-cot(4*Pi/7)^n)*(X-cot(8*Pi/7)^n) = X^3 - sqrt(7)^(-n)*a(n)*X^2 + (-sqrt(7))^(-n)*B(n)*X
- (-sqrt(7))^(-n), and (X-tan(2*Pi/7)^n)*(X-tan(4*Pi/7)^n)*(X-tan(8*Pi/7)^n) = X^3 - B(n)*X^2 + (-1)^n*a(n)*X - (-sqrt(7))^n, where B(n) := tan(2*Pi/7)^n + tan(4*Pi/7)^n + tan(8*Pi/7)^n = (-sqrt(7) + 4*sin(2*Pi/7))^n + (-sqrt(7) + 4*sin(4*Pi/7))^n + (-sqrt(7) + 4*sin(8*Pi/7))^n. Moreover we have 2*(-1)^n*B(n) = 7^(-n/2)*(a(n)^2 - a(2*n)). For the proof of these decompositions see Witula-Slota's (Section 6) and Witula's (Remark 11) reference.
We note that the numbers a(n)*7^(-ceiling(n/3)) are all integers. Moreover from the recurrence relation: a(n+3)+7*a(n+1)=7*(a(n+2)-a(n)) it can be easily obtained the following summations formulas: 8*sum{k=1,..,n} a(2*k) = 7*(a(2*n+1)-2)-a(2*n+2), which also means that the result is divisible by 8 for every n=1,2,..., and 8*sum{k=1,..,n} a(2*k-1) = 7*(a(2*n)-2)-a(2*n+1), which implies that 7*(a(n)-2)-a(n+1) is divisible by 8 for each n=0,1,...

Examples

			We have  cot(2*Pi/7)^2 + cot(4*Pi/7)^2 + cot(8*Pi/7)^2 = 5,  cot(2*Pi/7)^4 + cot(4*Pi/7)^4 + cot(8*Pi/7)^4 = 19, but cot(2*Pi/7)^6 + cot(4*Pi/7)^6 + cot(8*Pi/7)^6 = 563/7. Similarly the numbers sqrt(7)*(cot(2*Pi/7)^n + cot(4*Pi/7)^n + cot(8*Pi/7)^n) are integers for n=1,3,5,7 (equal to 7, 25, 103, 441, respectively), whereas for n=9 we obtain the rational value 13297/7.
		

References

  • E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.

Crossrefs

Programs

  • Magma
    I:=[3,7,35]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) - 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2017
  • Mathematica
    LinearRecurrence[{7,-7,-7}, {3,7,35}, 50]
  • PARI
    polsym(x^3 - 7*x^2 + 7*x + 7, 30) \\ Charles R Greathouse IV, Jul 20 2016
    

Formula

a(n) = (sqrt(7)^n)*(cot(2*Pi/7)^n + cot(4*Pi/7)^n + cot(8*Pi/7)^n) = (3 + 4*cos(2*Pi/7))^n + (3 + 4*cos(4*Pi/7))^n + (3 + 4*cos(8*Pi/7))^n = (-tan(2*Pi/7)*tan(4*Pi/7))^n + (-tan(2*Pi/7)*tan(8*Pi/7))^n + (-tan(4*Pi/7)*tan(8*Pi/7))^n.
G.f.: (3-14*x+7*x^2)/(1-7*x+7*x^2+7*x^3).
a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3 - 7*x^2 + 7*x + 7, that is, x1 = sqrt(7)/tan(Pi/7), x2 = sqrt(7)/tan(2*Pi/7), x3 = sqrt(7)/tan(4*Pi/7). - Kai Wang, Jul 19 2016

A215664 a(n) = 3*a(n-2) - a(n-3), with a(0)=3, a(1)=0, and a(2)=6.

Original entry on oeis.org

3, 0, 6, -3, 18, -15, 57, -63, 186, -246, 621, -924, 2109, -3393, 7251, -12288, 25146, -44115, 87726, -157491, 307293, -560199, 1079370, -1987890, 3798309, -7043040, 13382817, -24927429, 47191491, -88165104, 166501902, -311686803, 587670810, -1101562311
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 5 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. The respective sums with negative powers of the cosines form the sequence A215885. Additionally if we set b(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and c(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j):=2*cos(2*Pi*j/9), then the following system of recurrence equations holds true: b(n) - b(n+1) = a(n), a(n+1) - a(n) = c(n+1), a(n+2) - 2*a(n)=c(n). All three sequences satisfy the same recurrence relation: X(n+3) - 3*X(n+1) + X(n) = 0. Moreover we have a(n+1) + A215665(n) + A215666(n) = 0 since c(1) + c(2) + c(4) = 0, b(n)=A215665(n) and c(n)=A215666(n).
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = A215885(n) for every n=0,1,...
From initial values and the recurrence formula we deduce that a(n)/3 and a(3n+1)/9 are all integers. We have a(n)=3*(-1)^n *A188048(n) and a(2n)=A215455(n). Furthermore the following decomposition holds: (X - c(1)^n)*(X - c(2)^n)*(X - c(4)^n) = X^3 - a(n)*X^2 + ((a(n)^2 - a(2*n))/2)*X + (-1)^(n+1), which implies the relation (c(1)*c(2))^n + (c(1)*c(4))^n + (c(2)*c(4))^n = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (a(n)^2 - a(2*n))/2.

Examples

			We have c(1)^2 + c(2)^2 + c(4)^2 + 2*(c(1)^3 + c(2)^3 + c(4)^3) = 0 and 3*a(7) + a(8) = a(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {3,0,6}, 50]
  • PARI
    Vec(3*(1-x^2)/(1-3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = c(1)^n + c(2)^n + c(4)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: 3*(1-x^2)/(1-3*x^2+x^3).

A215512 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), with a(0)=1, a(1)=3, a(2)=8.

Original entry on oeis.org

1, 3, 8, 23, 70, 220, 703, 2265, 7327, 23748, 77043, 250054, 811760, 2635519, 8557089, 27784091, 90213440, 292919743, 951102166, 3088205812, 10027335807, 32558546329, 105716922615, 343260670908, 1114560365179, 3618954723062, 11750672095144, 38154192502527
Offset: 0

Views

Author

Roman Witula, Aug 14 2012

Keywords

Comments

The Berndt-type sequence number 7 for the argument 2Pi/7 defined by the relation: sqrt(7)*a(n) = s(1)*c(4)^(2*n) + s(2)*c(1)^(2*n) + s(4)*c(2)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7). If we additionally defined the following sequences:
sqrt(7)*b(n) = s(2)*c(4)^(2*n) + s(4)*c(1)^(2*n) + s(1)*c(2)^(2*n),
sqrt(7)*c(n) = s(4)*c(4)^(2*n) + s(1)*c(1)^(2*n) + s(2)*c(2)^(2*n), and
sqrt(7)*a1(n) = s(1)*c(4)^(2*n+1) + s(2)*c(1)^(2*n+1) + s(4)*c(2)^(2*n+1),
sqrt(7)*b1(n) = s(2)*c(4)^(2*n+1) + s(4)*c(1)^(2*n+1) + s(1)*c(2)^(2*n+1),
sqrt(7)*c1(n) = s(4)*c(4)^(2*n+1) + s(1)*c(1)^(2*n+1) + s(2)*c(2)^(2*n+1), then the following simple relationships between elements of these sequences hold true: a(n)=c1(n), c(n+1)=a1(n), -a(n)-b(n)=b1(n), which means that the sequences a1(n), b1(n), and c1(n) are completely and in very simple way determined by the sequences a(n), b(n) and c(n). However the last one's satisfy the following system of recurrence equations: a(n+1) = 2*a(n) + b(n), b(n+1) = a(n) + 2*b(n) - c(n), c(n+1) = c(n) - b(n). We have b(n)=A215694(n) and c(n)=A215695(n).
We note that a(n)=A000782(n) for every n=0,1,...,4 and A000782(5)-a(5)=2.
From general recurrence relation: a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), i.e. a(n) = 5*(a(n-1)-a(n-2)) + (a(n-3)-a(n-2)) the following summation formula can be easily obtained: sum{k=3,..,n} a(k) = 5*a(n-1)-a(n-2)+a(0)-5*a(1). Hence in discussed sequence it follows that: sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) - 14.

Examples

			We have a(6) = 10*a(4)+a(1), a(5) = 11*(a(3)-a(1)), a(10)-a(4)+a(3)+a(1)+a(0) = 77*10^3, and a(11)-a(4)+a(3)-a(2)+a(0) = 25*10^4 = (5^6)*(2^4).
		

Crossrefs

Programs

  • Magma
    I:=[1,3,8]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,3,8}, 50]
  • PARI
    x='x+O('x^30); Vec((1-2*x-x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 23 2018
    

Formula

G.f.: (1-2*x-x^2)/(1-5*x+6*x^2-x^3).

A215634 a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.

Original entry on oeis.org

3, -6, 18, -63, 234, -891, 3429, -13257, 51354, -199098, 772173, -2995218, 11619045, -45073827, 174857211, -678335958, 2631522330, -10208681991, 39603398850, -153636822171, 596016389349, -2312177133105, 8969825761002
Offset: 0

Views

Author

Roman Witula, Aug 18 2012

Keywords

Comments

The Berndt-type sequence number 2 for the argument 2Pi/9 . Similarly like the respective sequence number 1 -- see A215455 -- the sequence a(n) is connected with the following general recurrence relation: X(n+3) + 6*X(n+2) + 9*X(n+1) + ((2*cos(3*g))^2)*X(n) = 0, X(0)=3, X(1)=-6, X(2)=18. The Binet formula for this one has the form: X(n) = (-4)^n*((cos(g))^(2*n) + cos(g+Pi/3))^(2*n) + cos(g-Pi/3))^(2*n)) - for details see Witula-Slota's reference and comments to A215455.
The characteristic polynomial of a(n) has the form x^3 + 6*x^2 + 9*x + 3 = (x + (2*cos(Pi/18))^2)*(x+(2*cos(5*Pi/18))^2)*(x+(2*cos(7*Pi/18))^2). We note that (2*cos(Pi/18))^2 = 2 - c(4), (2*cos(5*Pi/18))^2 = 2 - c(2), and (2*cos(7*Pi/18))^2 = 2 - c(1), where c(j) = 2*cos(2*Pi*j/9) - see trigonometric relations for A215455. Furthermore all numbers a(n)*3^(-ceiling((n+1)/3)) are integers.

References

  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Magma
    I:=[3,-6,18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 30 2017
  • Mathematica
    LinearRecurrence[{-6,-9,-3}, {3,-6,18}, 50]
    CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 30 2017 *)
  • PARI
    Vec((3+12*x+9*x^2)/(1+6*x+9*x^2+3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    

Formula

a(n) = (-4)^n*((cos(Pi/18))^(2*n) + (cos(5*Pi/18))^(2*n) + (cos(7*Pi/18))^(2*n)).
G.f.: (3 + 12*x + 9*x^2)/(1 + 6*x + 9*x^2 + 3*x^3).
a(n)*(-1)^n = s(1)^(2*n) + s(2)^(2*n) + s(4)^(2*n), where s(j) := 2*sin(2*Pi*j/9) -- for the proof see Witula's book. The respective sums with odd powers of sines in A216757 are given. - Roman Witula, Sep 15 2012

A215665 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=a(2)=-3.

Original entry on oeis.org

0, -3, -3, -9, -6, -24, -9, -66, -3, -189, 57, -564, 360, -1749, 1644, -5607, 6681, -18465, 25650, -62076, 95415, -211878, 348321, -731049, 1256841, -2541468, 4501572, -8881245, 16046184, -31145307, 57019797, -109482105, 202204698, -385466112, 716096199
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 6 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 7) are discussed in A215664 and A215666 - for more details see comments to A215664 and Witula's reference. We have a(n) - a(n+1) = A215664(n).
From initial values and the recurrence formula we deduce that a(n)/3 are all integers.
We note that a(10) is the first element of a(n) which is positive integer and all (-1)^n*a(n+10) are positive integer, which can be obtained from the title recurrence relation.
The following decomposition holds (X - c(1)*c(2)^n)*(X - c(2)*c(4)^n)*(X - c(4)*c(1)^n) = X^3 - a(n)*X^2 - A215917(n-1)*X + (-1)^n.
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = abs(A215919(n)) = (-1)^n*A215919(n) for every n=0,1,...

Examples

			We have a(1)=a(2)=a(8)=-3, a(3)=a(6)=-9, a(4)+a(11)=-10*a(10), and 47*a(5)=2*a(11).
		

References

  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,-3,-3}, 50]
  • PARI
    concat(0,Vec(-3*(1+x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1+x)/(1-3*x^2+x^3).

A215666 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=-3, and a(2)=6.

Original entry on oeis.org

0, -3, 6, -9, 21, -33, 72, -120, 249, -432, 867, -1545, 3033, -5502, 10644, -19539, 37434, -69261, 131841, -245217, 464784, -867492, 1639569, -3067260, 5786199, -10841349, 20425857, -38310246, 72118920, -135356595, 254667006, -478188705, 899357613
Offset: 0

Views

Author

Roman Witula, Aug 20 2012

Keywords

Comments

The Berndt-type sequence number 7 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 6) are discussed in A215664 and A215665 - for more details see comments to A215664 and Witula's reference. We have a(n) = A215664(n+2) - 2*A215664(n) and a(n+1) = A215664(n+1) - A215664(n).
From initial values and the title recurrence formula we deduce that a(n)/3 and a(3*n)/9 are all integers.
If we set X(n) = 3*X(n-2) - X(n-3), n in Z, with a(n) = X(n), for every n=0,1,..., then X(-n) = -abs(A215917(n)) = (-1)^n*A215917(n), for every n=0,1,...

Examples

			We have 8*a(3)+a(6)=5*a(6)+3*a(7)=0, a(5) + a(12) = 3000, and (a(30)-1000*a(10)-a(2))/10^5 is an integer. Further we obtain  c(4)*cos(4*Pi/7)^7 + c(1)*cos(8*Pi/7)^7 + c(2)*c(2*Pi/7)^7 = -15/16.
		

References

  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,-1}, {0,-3,6}, 50]
  • PARI
    concat(0,Vec(-3*(1-2*x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012

Formula

a(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1-2*x)/(1-3*x^2+x^3).

A215635 a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) -36*a(n-5) - 2*a(n-6), with a(0)=3, a(1)=-6, a(2)=18, a(3)=-60, a(4)=210, a(5)=-756.

Original entry on oeis.org

3, -6, 18, -60, 210, -756, 2772, -10296, 38610, -145860, 554268, -2116296, 8112462, -31201644, 120347532, -465328200, 1803025410, -6999149124, 27213719148, -105960069864, 413078158350, -1612098272460, 6297409350492, -24620247483624, 96324799842498, -377102656201956, 1477141800784668
Offset: 0

Views

Author

Roman Witula, Aug 18 2012

Keywords

Comments

The Berndt-type sequence number 3 for the argument 2*Pi/9 defined by the relation: X(n) = a(n) + b(n)*sqrt(2), where X(n) := ((cos(Pi/24))^(2*n) + (cos(7*Pi/24))^(2*n) + (cos(3*Pi/8))^(2*n))*(-4)^n. We have b(n) = A215636(n).
We note that above formula is the Binet form of the following recurrence sequence: X(n+3) + 6*X(n+2) + 9*X(n+1) + (2 + sqrt(2))*X(n) = 0, which is a special type of the sequence X(n)=X(n;g) defined in the comments to A215634 for g:=Pi/24. The sequences a(n) and b(n) satisfy the following system of recurrence equations: a(n) = -b(n+3)-6*b(n+2)-9*b(n+1)-2*b(n), 2*b(n) = -a(n+3)-6*a(n+2)-9*a(n+1)-2*a(n).
There exists an amazing relation: (-1)^n*a(n)=3*A000984(n) for every n=0,1,...,11 and 3*A000984(12)-a(12)=6.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-12,-54,-112,-105,-36,-2}, {3,-6,18,-60,210,-756}, 50]
  • PARI
    Vec((3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) /(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012

Formula

G.f.: (3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) / (1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).

A215636 a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) - 36*a(n-5) - 2*a(n-6) with a(0)=a(1)=a(2)=0, a(3)=-3, a(4)=24, a(5)=-135.

Original entry on oeis.org

0, 0, 0, -3, 24, -135, 660, -3003, 13104, -55689, 232500, -958617, 3916440, -15890355, 64127700, -257698347, 1032023136, -4121456625, 16421256420, -65301500577, 259259758056, -1027901275131, 4070632899300, -16104283594083, 63657906293520, -251447560563465, 992593021410900
Offset: 0

Views

Author

Roman Witula, Aug 18 2012

Keywords

Comments

The Berndt-type sequence number 4 for the argument 2*Pi/9 defined by the relation: X(n) = b(n) + a(n)*sqrt(2), where X(n) := ((cos(Pi/24))^(2*n) + (cos(7*Pi/24))^(2*n) + (cos(3*Pi/8))^(2*n))*(-4)^n. We have b(n) = A215635(n) (see also section "Example" below). For more details - see comments to A215635, A215634 and Witula-Slota's reference.

Examples

			We have X(1)=-6, X(2)=18 and X(3)=-60-3*sqrt(2), which implies the equality: (cos(Pi/24))^6 + (cos(7*Pi/24))^6 + (cos(3*Pi/8))^6 = (60+3*sqrt(2))/64.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-12,-54,-112,-105,-36,-2}, {0,0,0,-3,24,-135}, 50]

Formula

G.f.: (-3*x^3-12*x^4-9*x^5)/(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).

A215829 a(n) = -3*a(n-1) + 9*a(n-2) + 3*a(n-3), with a(0)=3, a(1)=-3, a(2)=27.

Original entry on oeis.org

3, -3, 27, -99, 531, -2403, 11691, -55107, 263331, -1250883, 5957307, -28339875, 134882739, -641835171, 3054430539, -14535159939, 69169849155, -329162695299, 1566411248475, -7454188455651, 35472778517331, -168806797907427, 803312835011307
Offset: 0

Views

Author

Roman Witula, Aug 24 2012

Keywords

Comments

The Berndt-type sequence number 8 for the argument 2*Pi/9 defined by the trigonometric relations from the Formula section below.
From the general recurrence relation: b(n) = -3*b(n-1) + 9*b(n-2) + 3*b(n-3), i.e., b(n) - b(n-2) = 8*b(n-2) + 3(b(n-3) - b(n-1)) the following summation formulas can be easily deduced: b(2*n+1) + 3*b(2*n) - 3*b(0) - b(1) = 8*Sum_{k=1..n} b(2*k-1) and b(2*n+2) + 3*b(2*n+1) - b(2) - 3*b(1) = 8*Sum_{k=1..n} b(2*k). Hence it follows that (a(2*n+1) + 3*a(2*n))/2 are all integers congruent to 3 modulo 4, and (a(2*n+2) + 3*a(2*n+1))/2 are all integers congruent to 1 modulo 4.
We note that all numbers 3^(-1-floor(n/3))*a(n) = A215831(n) and 3^(-n-2)*a(3*n+2) are integers.
The following decomposition holds true: (X - k(1)^n)*(X - (-k(2))^n)*(X - k(3)^n) = X^3 - sqrt(3)^(-n)*a(n)*X^2 + sqrt(3)^(-n)*T(n) - sqrt(3)^(-n), where T(2*n+1) = sqrt(3)*A215945(n) and T(2*n) = A215948(n). [Roman Witula, Aug 30 2012]

Examples

			We have k(1)^3 - k(2)^3 + k(4)^3 = -11*sqrt(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-3, 9, 3}, {3, -3, 27}, 50]

Formula

a(n) = (k(1)^n + (-k(2))^n + k(4)^n)*(sqrt(3))^n = (-1+4*c(1))^n + (-1+4*c(2))^n + (-1+4*c(4))^n, where k(j) := cot(2*Pi*j/9) and c(j) := cos(2*Pi*j/9).
G.f.: (3 + 6*x - 9*x^2)/(1 + 3*x - 9*x^2 - 3*x^3). [corrected by Georg Fischer, May 10 2019]

A217336 a(n) = 3^(-1+floor(n/2))*A(n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.

Original entry on oeis.org

1, 1, 11, 35, 345, 1129, 11091, 36315, 356721, 1168017, 11473371, 37567443, 369023049, 1208298105, 11869049763, 38863020555, 381749439969, 1249968331809, 12278374244523, 40203278289027, 394914722339385, 1293075627640713
Offset: 0

Views

Author

Roman Witula, Oct 01 2012

Keywords

Comments

The Berndt-type sequence number 14 for the argument 2Pi/9 defined by the relation: A(n)*(-sqrt(3))^n = t(1)^n + (-t(2))^n + t(4)^n = (-sqrt(3) + 4*s(1))^n + (-sqrt(3) - 4*s(2))^n + (-sqrt(3) + 4*s(4))^n, where s(j) := sin(2*Pi*j/9) and t(j) := tan(2*Pi*j/9).
The definitions of the other Berndt-type sequences for the argument 2Pi/9 like A215945, A215948, A216034 in Crossrefs are given.
We note that all a(2*n), n=2,3,..., are divisible by 3, and it is only when n=5 that a(2*n) is divisible by 9.

Examples

			Note that A(0)=A(1)=3, a(0)=a(1)=1, A(2)=a(2)=11, A(3)=a(3)=35, A(4)=115, a(4)=345 and A(5) = 1129/3, which implies the equality  3387*sqrt(3) = -t(1)^5 + t(2)^5 - t(4)^5.
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Magma
    /* By definition: */ i:=22; I:=[3,3,11]; A:=[m le 3 select I[m] else 3*Self(m-1)+Self(m-2)-Self(m-3)/3: m in [1..i]]; [3^(-1+Floor((n-1)/2))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 02 2012
  • Mathematica
    LinearRecurrence[{0, 33, 0, -27, 0, 3}, {1, 1, 11, 35, 345, 1129},25] (* Paolo Xausa, Feb 23 2024 *)

Formula

G.f.: (1+x-22*x^2+2*x^3+9*x^4+x^5)/(1-33*x^2+27*x^4-3*x^6). - Bruno Berselli, Oct 01 2012
Showing 1-10 of 11 results. Next