cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215053 a(n) = 1/7*( binomial(n,7) - floor(n/7) ).

Original entry on oeis.org

1, 5, 17, 47, 113, 245, 490, 919, 1634, 2778, 4546, 7198, 11074, 16611, 24363, 35022, 49443, 68671, 93971, 126861, 169148, 222968, 290828, 375653, 480836, 610292, 768516, 960645, 1192525, 1470781, 1802893, 2197276, 2663365, 3211705, 3854046
Offset: 8

Views

Author

Peter Bala, Aug 01 2012

Keywords

Comments

Not the same as A011853.
Let p be a prime. Saikia and Vogrinc have proved that 1/p*{binomial(n,p) - floor(n/p)} is an integer sequence. The present sequence is the case p = 7. Other cases are A002620 (p = 2), A014125 (p = 3), A215052 (p = 5) and A215054 (p = 11).

Crossrefs

Cf. A002620 (p = 2), A014125 (p = 3), A178904, A215052 (p = 5), A215054 (p = 11).

Programs

  • Magma
    [(Binomial(n, 7)-Floor(n/7))/7: n in [8..50]]; // Vincenzo Librandi, Jun 23 2015
  • Mathematica
    Table[(Binomial[n,7]-Floor[n/7])/7,{n,8,50}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,2,-7,21,-35,35,-21,7,-1},{1,5,17,47,113,245,490,919,1634,2778,4546,7198,11074,16611},40] (* Harvey P. Dale, Dec 23 2014 *)
  • PARI
    a(n) = (binomial(n, 7) - n\7) / 7; \\ Michel Marcus, Jan 23 2014
    

Formula

O.g.f.: sum {n>=0} a(n)*x^n = x^8*(1 - 2*x + 3*x^2 - 2*x^3 + x^4)/((1-x^7)*(1-x)^7) = x^8*(1 + 5*x + 17*x^2 + 47*x^3 + ...). The numerator polynomial 1 - 2*x + 3*x^2 - 2*x^3 + x^4 is the negative of the row generating polynomial for row 7 of A178904.