cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217872 a(n) = sigma(n)^n.

Original entry on oeis.org

1, 9, 64, 2401, 7776, 2985984, 2097152, 2562890625, 10604499373, 3570467226624, 743008370688, 232218265089212416, 793714773254144, 21035720123168587776, 504857282956046106624, 727423121747185263828481, 2185911559738696531968, 43567528752021332753202420081
Offset: 1

Views

Author

Paul D. Hanna, Nov 01 2012

Keywords

Comments

Here sigma(n) = A000203(n) is the sum of the divisors of n.
Compare to A023887(n) = sigma(n,n).

Examples

			L.g.f.: L(x) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 6^5*x^5/5 + 12^6*x^6/6 +...
where exponentiation yields the g.f. of A156217:
exp(L(x)) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 2273*x^5 + 502568*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^n, {n, 1, 20}] (* Amiram Eldar, Nov 16 2020 *)
  • PARI
    {a(n)=sigma(n)^n}
    for(n=1,20,print1(a(n),", "))

Formula

Logarithmic derivative of A156217.
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A215140.
Sum_{n>=1} (-1)^(n+1)/a(n) = A215141. (End)

A215141 Decimal expansion of Sum_{n>=1} (-1)^(n+1) / sigma(n)^n.

Original entry on oeis.org

9, 0, 4, 2, 2, 6, 1, 3, 8, 2, 2, 8, 4, 3, 4, 5, 2, 1, 1, 4, 6, 2, 7, 4, 9, 6, 5, 6, 2, 5, 6, 5, 6, 2, 7, 3, 2, 8, 7, 5, 1, 8, 2, 8, 3, 4, 9, 0, 3, 8, 1, 7, 6, 7, 3, 5, 9, 9, 7, 9, 1, 0, 9, 8, 7, 5, 8, 3, 2, 8, 2, 4, 3, 4, 7, 8, 8, 1, 4, 3, 0, 3, 6, 0, 5, 6, 8
Offset: 0

Views

Author

Michel Lagneau, Aug 04 2012

Keywords

Examples

			.90422613822843452114627...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[((-1)^(n+1))/DivisorSigma[1,n]^n,{n,1,105}],105]][[1]]
  • PARI
    suminf(n=1, (-1)^(n+1)/sigma(n)^n) \\ Michel Marcus, Apr 20 2018
Showing 1-2 of 2 results.