cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215414 Unix epoch timestamp for start of year, beginning with 1970.

Original entry on oeis.org

0, 31536000, 63072000, 94694400, 126230400, 157766400, 189302400, 220924800, 252460800, 283996800, 315532800, 347155200, 378691200, 410227200, 441763200, 473385600, 504921600, 536457600, 567993600, 599616000, 631152000, 662688000, 694224000, 725846400, 757382400
Offset: 1

Views

Author

Kyle Stern, Aug 09 2012

Keywords

Comments

This is based on a naive multiplication of A033172 with a fixed number of seconds per year, 24*3600 = 86400. It ignores that leap years are not regularly occurring after 4 years (but after 400 years, note the formula that relates a(n+4) to a(n) and also the simple Mma implementation), ignores leap seconds, and any other influences that align the slowing down of the Earth rotation in an astronomical fixed coordinate system measured relative to atomic clocks. In summary, the use of "year" in the definition is not commensurate with years in standard astronomical or earth observational terms. - R. J. Mathar, Aug 21 2012

Crossrefs

Programs

  • Mathematica
    lst = {}; t = 86400; Do[e = t*(365*(n - 1) + Ceiling[n/4]); If[! Mod[n, 4] == 0, e = e - t]; AppendTo[lst, e], {n, 25}]; lst (* Arkadiusz Wesolowski, Aug 20 2012 *)
    CoefficientList[Series[86400*(365*x + 365*x^2 + 366*x^3 + 365*x^4)/((x - 1)^2*(1 +x +x^2 +x^3)), {x,0,50}], x] (* G. C. Greubel, Feb 26 2017 *)
  • PARI
    x='x+O('x^50); Vec(86400*(365*x +365*x^2 +366*x^3 +365*x^4)/((1-x)^2*(1+x+x^2+x^3))) \\ G. C. Greubel, Feb 26 2017

Formula

From Alexander R. Povolotsky, Aug 20 2012: (Start)
a(n) = 10800*(2922*n + (-1)^n + (1+i)*(-i)^n + (1-i)*i^n - 2923).
a(n+4) = a(n) + 126230400.
G.f.: 86400*(365*x +365*x^2 +366*x^3 +365*x^4)/((1-x)^2*(1+x+x^2+x^3)). (End)

Extensions

a(11)-a(25) from Arkadiusz Wesolowski, Aug 20 2012