cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A215434 Primes of form 2^k + k^2 - 1.

Original entry on oeis.org

2, 7, 31, 1123, 1180591620717411308323, 21778071482940061661655974875633165551139, 89202980794122492566142873090593446023942979, 1569275433846670190958947355801916604025588861116008664323
Offset: 1

Views

Author

Vincenzo Librandi, Sep 03 2012

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 2^n+n^2-1];
  • Mathematica
    Select[Table[2^n + n^2 - 1, {n, 0, 300}], PrimeQ]

A216420 Numbers k such that 13^k + k^13 - 1 is prime.

Original entry on oeis.org

1, 5, 85, 155, 383, 6223
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(7) > 2*10^5 if it exists. - Robert Price, Jul 07 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(13^n+n^13-1)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[13^# + #^13 - 1] &]
  • PARI
    is(n)=ispseudoprime(13^n+n^13-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(6) from Robert Price, May 24 2014

A216424 Numbers k such that 4^k + k^4 - 1 is prime.

Original entry on oeis.org

2, 16, 74, 164, 518, 796, 8756, 12598
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(9) > 10^5. - Robert Price, Feb 04 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(4^n+n^4-1)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[4^# + #^4 - 1] &]
  • PARI
    is(n)=ispseudoprime(4^n+n^4-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(7)-a(8) from Robert Price, Feb 04 2014

A216592 Numbers m such that 8^m + m^8 + 1 is prime.

Original entry on oeis.org

0, 108, 27018
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2012

Keywords

Comments

Next term > 2*10^4.
a(4) > 10^5. - Robert Price, Oct 08 2015

Examples

			8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
		

Crossrefs

Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13).
Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19).
Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5).
Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5).

Programs

  • Mathematica
    Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
  • PARI
    is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(3) from Robert Price, Oct 08 2015
Showing 1-4 of 4 results.