A216375
Numbers k such that 11^k + k^11 + 1 is prime.
Original entry on oeis.org
0, 1, 5, 941, 23071
Offset: 1
-
Select[Range[0, 5000], PrimeQ[11^# + #^11 + 1] &]
-
is(n)=isprime(11^n+n^11+1) \\ Charles R Greathouse IV, Feb 17 2017
A215439
Numbers k such that 2^k + k^2 - 1 is prime.
Original entry on oeis.org
1, 2, 4, 10, 70, 134, 146, 190, 218, 292, 478, 7136, 15964, 19988, 100790, 111442, 181874, 202112
Offset: 1
-
[n: n in [0..1000] | IsPrime(2^n+n^2-1)]
-
Select[Range[0, 9000], PrimeQ[2^# + #^2 - 1] &]
-
is(n)=ispseudoprime(2^n+n^2-1) \\ Charles R Greathouse IV, May 22 2017
A215445
Numbers k such that 7^k + k^7 - 1 is prime.
Original entry on oeis.org
1, 11, 65, 133, 679, 1571, 27517, 51631
Offset: 1
-
Select[Range[0, 5000], PrimeQ[7^# + #^7 - 1] &]
-
is(n)=ispseudoprime(7^n+n^7-1) \\ Charles R Greathouse IV, Jun 06 2017
A216423
Numbers k such that 4^k + k^4 + 1 is prime.
Original entry on oeis.org
0, 6, 12, 3804, 8346, 15528, 147036
Offset: 1
-
Select[Range[0, 5000], PrimeQ[4^# + #^4 + 1] &]
-
is(n)=ispseudoprime(4^n+n^4+1) \\ Charles R Greathouse IV, Jun 06 2017
A216420
Numbers k such that 13^k + k^13 - 1 is prime.
Original entry on oeis.org
1, 5, 85, 155, 383, 6223
Offset: 1
-
[n: n in [0..1000] | IsPrime(13^n+n^13-1)];
-
Select[Range[0, 5000], PrimeQ[13^# + #^13 - 1] &]
-
is(n)=ispseudoprime(13^n+n^13-1) \\ Charles R Greathouse IV, Jun 13 2017
A216421
Numbers k such that 13^k + k^13 + 1 is prime.
Original entry on oeis.org
0, 9, 4371, 7985, 14711
Offset: 1
-
Select[Range[0, 5000], PrimeQ[13^# + #^13 + 1] &]
-
is(n)=ispseudoprime(13^n+n^13+1) \\ Charles R Greathouse IV, Jun 13 2017
A216422
Numbers k such that 19^k + k^19 - 1 is prime.
Original entry on oeis.org
1, 17, 145, 427, 4327, 14195
Offset: 1
-
Select[Range[0, 5000], PrimeQ[19^# + #^19 - 1] &]
-
is(n)=ispseudoprime(19^n+n^19-1) \\ Charles R Greathouse IV, Jun 13 2017
A216424
Numbers k such that 4^k + k^4 - 1 is prime.
Original entry on oeis.org
2, 16, 74, 164, 518, 796, 8756, 12598
Offset: 1
-
[n: n in [0..800] | IsPrime(4^n+n^4-1)];
-
Select[Range[0, 5000], PrimeQ[4^# + #^4 - 1] &]
-
is(n)=ispseudoprime(4^n+n^4-1) \\ Charles R Greathouse IV, Jun 13 2017
A216425
Numbers k such that 6^k + k^6 - 1 is prime.
Original entry on oeis.org
12, 24, 72, 13404, 179964
Offset: 1
-
[n: n in [0..1000] | IsPrime(6^n+n^6-1)];
-
Select[Range[0, 10000], PrimeQ[6^# + #^6 - 1] &]
-
is(n)=ispseudoprime(6^n+n^6-1) \\ Charles R Greathouse IV, Jun 13 2017
A216591
Numbers k such that 8^k + k^8 - 1 is prime.
Original entry on oeis.org
10, 38, 428, 824, 3902, 4712, 5596, 29572
Offset: 1
-
Select[Range[0, 4000],PrimeQ[8^# + #^8 - 1] &]
-
is(n)=ispseudoprime(8^n+n^8-1) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-10 of 13 results.
Comments