A215862 Number of simple labeled graphs on n+2 nodes with exactly n connected components that are trees or cycles.
0, 4, 19, 55, 125, 245, 434, 714, 1110, 1650, 2365, 3289, 4459, 5915, 7700, 9860, 12444, 15504, 19095, 23275, 28105, 33649, 39974, 47150, 55250, 64350, 74529, 85869, 98455, 112375, 127720, 144584, 163064, 183260, 205275, 229215, 255189, 283309, 313690, 346450
Offset: 0
Examples
a(1) = 4: .1-2. .1-2. .1-2. .1 2. .|/ . .|. . . / . .|/ . .3... .3... .3... .3...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Maple
a:= n-> binomial(n+2,3)*(3*n+13)/4: seq(a(n), n=0..40);
-
Mathematica
Table[Binomial[n+2,3] (3n+13)/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,4,19,55,125},40] (* Harvey P. Dale, Sep 10 2012 *)
Formula
G.f.: (x-4)*x/(x-1)^5.
a(n) = C(n+2,3)*(3*n+13)/4.
a(n) = 5*a(n-1)- 10*a(n-2)+ 10*a(n-3) -5*a(n-4)+a(n-5), n>4. - Harvey P. Dale, Sep 10 2012
a(n) = (1/n!) * Sum_{j=0..n} C(n,j)*(-1)^(n-j)*j^(n+1)*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = Sum_{i=0..n} (3+i)*A000217(i). - Bruno Berselli, Apr 29 2014
Comments