cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215862 Number of simple labeled graphs on n+2 nodes with exactly n connected components that are trees or cycles.

Original entry on oeis.org

0, 4, 19, 55, 125, 245, 434, 714, 1110, 1650, 2365, 3289, 4459, 5915, 7700, 9860, 12444, 15504, 19095, 23275, 28105, 33649, 39974, 47150, 55250, 64350, 74529, 85869, 98455, 112375, 127720, 144584, 163064, 183260, 205275, 229215, 255189, 283309, 313690, 346450
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2012

Keywords

Comments

Partial sums of A077414. - Bruno Berselli, Jul 30 2015

Examples

			a(1) = 4:
.1-2.  .1-2.  .1-2.  .1 2.
.|/ .  .|. .  . / .  .|/ .
.3...  .3...  .3...  .3...
		

Crossrefs

A diagonal of A215861.
Regarding the sixth formula, see similar sequences listed in A241765.

Programs

  • Maple
    a:= n-> binomial(n+2,3)*(3*n+13)/4:
    seq(a(n), n=0..40);
  • Mathematica
    Table[Binomial[n+2,3] (3n+13)/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,4,19,55,125},40] (* Harvey P. Dale, Sep 10 2012 *)

Formula

G.f.: (x-4)*x/(x-1)^5.
a(n) = C(n+2,3)*(3*n+13)/4.
a(n) = 5*a(n-1)- 10*a(n-2)+ 10*a(n-3) -5*a(n-4)+a(n-5), n>4. - Harvey P. Dale, Sep 10 2012
a(n) = (1/n!) * Sum_{j=0..n} C(n,j)*(-1)^(n-j)*j^(n+1)*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 4*A000332(n+2) - A000332(n+1). - R. J. Mathar, Aug 12 2013
a(n) = Sum_{i=0..n} (3+i)*A000217(i). - Bruno Berselli, Apr 29 2014