cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215930 Number of forests on unlabeled nodes with n edges and no single node trees.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 34, 71, 154, 341, 768, 1765, 4134, 9838, 23766, 58226, 144353, 361899, 916152, 2339912, 6023447, 15617254, 40752401, 106967331, 282267774, 748500921, 1993727506, 5332497586, 14316894271, 38574473086, 104273776038, 282733466684, 768809041078
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2012

Keywords

Comments

Each forest counted by a(n) with n>0 has number of nodes from the interval [n+1,2*n] and number of trees in [1,n].
Also limiting sequence of reversed rows of A095133.
Differs from A011782 first at n=6 (32) and from A088325 at n=8 (153).

Examples

			a(0) = 1: (  ), the empty forest with 0 trees and 0 edges.
a(1) = 1: ( o-o ), 1 tree and 1 edge.                      o
a(2) = 2: ( o-o-o ), ( o-o o-o ).                          |
a(3) = 4: ( o-o-o-o ), ( o-o-o o-o ), ( o-o o-o o-o ), ( o-o-o ).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
        end:
    t:= proc(n) option remember; local k; `if` (n=0, 1, b(n)-
          (add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
        end:
    g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j)*
           binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
        end:
    a:= n-> g(2*n, 2*n, n):
    seq(a(n), n=0..40);
  • Mathematica
    nn = 30; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0;
    a[1] = 1; sol =
    SolveAlways[
      0 == Series[
        t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
    b[x_] := Sum[a[n] x^n /. sol, {n, 0, nn}]; ft =
    Drop[Flatten[
       CoefficientList[Series[b[x] - (b[x]^2 - b[x^2])/2, {x, 0, nn}],
        x]], 1]; Drop[
    CoefficientList[
      Series[Product[1/(1 - y ^(i - 1))^ft[[i]], {i, 2, nn}], {y, 0, nn}],
    y], -1] (* Geoffrey Critzer, Nov 10 2014 *)

Formula

a(n) = A095133(2*n,n).
a(n) = A105821(2*n+1,n+1). - Alois P. Heinz, Jul 10 2013
a(n) = A136605(2*n+1,n). - Alois P. Heinz, Apr 11 2014
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.955765285..., c = 3.36695186... . - Vaclav Kotesovec, Sep 10 2014