A215930 Number of forests on unlabeled nodes with n edges and no single node trees.
1, 1, 2, 4, 8, 16, 34, 71, 154, 341, 768, 1765, 4134, 9838, 23766, 58226, 144353, 361899, 916152, 2339912, 6023447, 15617254, 40752401, 106967331, 282267774, 748500921, 1993727506, 5332497586, 14316894271, 38574473086, 104273776038, 282733466684, 768809041078
Offset: 0
Keywords
Examples
a(0) = 1: ( ), the empty forest with 0 trees and 0 edges. a(1) = 1: ( o-o ), 1 tree and 1 edge. o a(2) = 2: ( o-o-o ), ( o-o o-o ). | a(3) = 4: ( o-o-o-o ), ( o-o-o o-o ), ( o-o o-o o-o ), ( o-o-o ).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..650
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) end: t:= proc(n) option remember; local k; `if` (n=0, 1, b(n)- (add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2) end: g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j)* binomial(t(i)+j-1, j), j=0..min(n/i, p))))) end: a:= n-> g(2*n, 2*n, n): seq(a(n), n=0..40);
-
Mathematica
nn = 30; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0; a[1] = 1; sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; b[x_] := Sum[a[n] x^n /. sol, {n, 0, nn}]; ft = Drop[Flatten[ CoefficientList[Series[b[x] - (b[x]^2 - b[x^2])/2, {x, 0, nn}], x]], 1]; Drop[ CoefficientList[ Series[Product[1/(1 - y ^(i - 1))^ft[[i]], {i, 2, nn}], {y, 0, nn}], y], -1] (* Geoffrey Critzer, Nov 10 2014 *)
Formula
a(n) = A095133(2*n,n).
a(n) = A105821(2*n+1,n+1). - Alois P. Heinz, Jul 10 2013
a(n) = A136605(2*n+1,n). - Alois P. Heinz, Apr 11 2014
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.955765285..., c = 3.36695186... . - Vaclav Kotesovec, Sep 10 2014
Comments