A095133
Triangle of numbers of forests on n nodes containing k trees.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 1, 11, 11, 7, 4, 2, 1, 1, 23, 23, 14, 8, 4, 2, 1, 1, 47, 46, 29, 15, 8, 4, 2, 1, 1, 106, 99, 60, 32, 16, 8, 4, 2, 1, 1, 235, 216, 128, 66, 33, 16, 8, 4, 2, 1, 1, 551, 488, 284, 143, 69, 34, 16, 8, 4, 2, 1, 1, 1301, 1121, 636, 315, 149, 70, 34, 16, 8, 4, 2, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
3, 3, 2, 1, 1;
6, 6, 4, 2, 1, 1;
11, 11, 7, 4, 2, 1, 1;
23, 23, 14, 8, 4, 2, 1, 1;
47, 46, 29, 15, 8, 4, 2, 1, 1;
106, 99, 60, 32, 16, 8, 4, 2, 1, 1;
...
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 6 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Forest
Limiting sequence of reversed rows gives
A215930.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
t:= proc(n) option remember; local k; `if` (n=0, 1,
b(n)-(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j) *
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= (n, k)-> g(n, n, k):
seq(seq(a(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 20 2012
-
nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);ft=Table[a[i]-Sum[a[j]a[i-j],{j,1,i/2}]+If[OddQ[i],0,a[i/2](a[i/2]+1)/2],{i,1,nn}];CoefficientList[Series[Product[1/(1-y x^i)^ft[[i]],{i,1,nn}],{x,0,20}],{x,y}]//Grid (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000055 *)
A136605
Triangle read by rows: T(n,k) = number of forests on n unlabeled nodes with k edges (n>=1, 0<=k<=n-1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 4, 6, 6, 1, 1, 2, 4, 7, 11, 11, 1, 1, 2, 4, 8, 14, 23, 23, 1, 1, 2, 4, 8, 15, 29, 46, 47, 1, 1, 2, 4, 8, 16, 32, 60, 99, 106, 1, 1, 2, 4, 8, 16, 33, 66, 128, 216, 235, 1, 1, 2, 4, 8, 16, 34, 69, 143, 284, 488, 551, 1, 1, 2, 4, 8, 16, 34, 70, 149, 315, 636, 1121, 1301
Offset: 1
Triangle begins:
1
1,1
1,1,1
1,1,2,2
1,1,2,3,3
1,1,2,4,6,6 <- T(6,3) = 4 forests on 6 nodes with 3 edges.
1,1,2,4,7,11,11
1,1,2,4,8,14,23,23
1,1,2,4,8,15,29,46,47
1,1,2,4,8,16,32,60,99,106
1,1,2,4,8,16,33,66,128,216,235
1,1,2,4,8,16,34,69,143,284,488,551
1,1,2,4,8,16,34,70,149,315,636,1121,1301
1,1,2,4,8,16,34,71,152,330,710,1467,2644,3159
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
-
with(numtheory):
b:= proc(n) option remember; `if`(n<=1, n, (add(add(
d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))
end:
t:= n-> `if`(n=0, 1, b(n)-(add(b(k)*b(n-k), k=0..n)-
`if`(irem(n, 2)=0, b(n/2), 0))/2):
g:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, expand(add(binomial(t(i)+j-1, j)*
g(n-i*j, i-1)*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(g(n$2)):
seq(T(n), n=1..14); # Alois P. Heinz, Apr 11 2014
-
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; t[n_] := If[n == 0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Expand[Sum[Binomial[t[i] + j - 1, j]*g[n - i*j, i-1]*x^j, {j, 0, n/i}]]]]; T[n_] := CoefficientList[g[n, n], x] // Reverse // Most; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)
A105821
Triangle of the numbers of different forests with one or more isolated vertices. Those forests have order N and m trees.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 3, 3, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 11, 11, 7, 4, 2, 1, 1, 0, 23, 23, 14, 8, 4, 2, 1, 1, 0, 47, 46, 29, 15, 8, 4, 2, 1, 1, 0, 106, 99, 60, 32, 16, 8, 4, 2, 1, 1, 0, 235, 216, 128, 66, 33, 16, 8, 4, 2, 1, 1, 0, 551, 488, 284, 143, 69, 34, 16, 8, 4, 2, 1, 1
Offset: 1
a(5,2) = 2 because 5 vertices can be partitioned in two trees only in one way: one tree gets 4 nodes and the other tree gets 1. Since A000055(4) = 2 and A000055(1) = 1, there are 2 forests. The forests of order less than or equal to 5 are depicted in the Weisstein "Forest" link.
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 2, 2, 1, 1;
0, 3, 3, 2, 1, 1;
0, 6, 6, 4, 2, 1, 1;
0, 11, 11, 7, 4, 2, 1, 1;
0, 23, 23, 14, 8, 4, 2, 1, 1;
0, 47, 46, 29, 15, 8, 4, 2, 1, 1;
0, 106, 99, 60, 32, 16, 8, 4, 2, 1, 1;
0, 235, 216, 128, 66, 33, 16, 8, 4, 2, 1, 1;
Showing 1-3 of 3 results.
Comments