cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216134 Numbers k such that 2 * A000217(k) + 1 is triangular.

Original entry on oeis.org

0, 1, 4, 9, 26, 55, 154, 323, 900, 1885, 5248, 10989, 30590, 64051, 178294, 373319, 1039176, 2175865, 6056764, 12681873, 35301410, 73915375, 205751698, 430810379, 1199208780, 2510946901, 6989500984, 14634871029, 40737797126, 85298279275, 237437281774
Offset: 0

Views

Author

Raphie Frank, Sep 01 2012

Keywords

Comments

Numbers n such that 2*triangular(n) + 1 is a triangular number. Equivalently, numbers n such that n^2 + n + 1 is a triangular number. - Alex Ratushnyak, Apr 18 2013
For n > 0, a(n) is the n-th almost cobalancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Cf. A000217, A069017 (triangular numbers of the form k^2 + k + 1).

Programs

  • Mathematica
    LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 4, 9, 26}, 40] (* T. D. Noe, Sep 03 2012 *)
  • PARI
    Vec( x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 13 2014
    
  • PARI
    isok(n) = ispolygonal(n*(n+1) + 1, 3); \\ Michel Marcus, Aug 13 2014

Formula

G.f.: x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)). - R. J. Mathar, Sep 08 2012
sqrt(2) = lim_{k->infinity} ((a(2k+1) + a(2k) + 1)/2)/(a(2k+1) - a(2k)) = lim_{k->infinity} A001333(2k + 1)/A000129(2k + 1).
1 + (sqrt 2) = lim_{k->infinity} (a(2k + 1) - a(2k))/(a(2k + 1) - 2*a(2k) + a(2k - 1)) = lim_{k->infinity} A000129(2k + 1)/A000129(2k).
1 + 1/(sqrt 2) = lim_{k->infinity} (a(2k+1) - a(2k))/(a(2k) - a(2k - 1)) = lim_{k->infinity} A000129(2k + 1)/A001333(2k).
a(n) = (2*A000129(n) + (-1)^n*(A000129(2*floor(n/2) - 1) - (-1)^n)/2). - Raphie Frank, Jan 04 2013
From Raphie Frank, Jan 04 2013: (Start)
A124174(n) = a(n)*(a(n) + 1)/2.
A079496(n) = a(n + 1) - a(n).
A000129(2n) = a(2n) - 2*a(2n - 1) + a(2n - 2).
A000129(2n) = a(2n + 1) - 2*a(2n) + a(2n - 1).
A000129(2n + 1) = a(2n + 1) - a(2n).
A001333(2n) = a(2n) - a(2n - 1).
A001333(2n + 1) = (a(2n + 1) + a(2n) + 1)/2.
A006451(n + 1) = (a(n + 2) + a(n))/2.
A006452(n + 2) = (a(n + 2) - a(n))/2.
A124124(n + 2) = (a(n + 2) + a(n))/2 + (a(n + 2) - a(n)).
(End)
a(n + 2) = sqrt(8*a(n)^2 + 8*a(n) + 9) + 3*a(n) + 1; a(0) = 0, a(1) = 1. - Raphie Frank, Feb 02 2013
a(n) = (3/8 + sqrt(2)/4)*(1 + sqrt(2))^n + (-1/8 - sqrt(2)/8)*(-1 + sqrt(2))^n + (3/8 - sqrt(2)/4)*(1 - sqrt(2))^n + (-1/8 + sqrt(2)/8)*(-1 - sqrt(2))^n - 1/2. - Robert Israel, Aug 13 2014
E.g.f.: (1/4)*(-2*cosh(x) - 2*sinh(x) + 2*cosh(sqrt(2)*x)*(cosh(x) + 2*sinh(x)) + sqrt(2)*(cosh(x) + 3*sinh(x))*sinh(sqrt(2)*x)). - Stefano Spezia, Dec 10 2019