A216145 Primes p such that p (mod 5) = p (mod 7).
2, 3, 37, 71, 73, 107, 109, 179, 211, 281, 283, 317, 353, 389, 421, 457, 491, 563, 599, 631, 701, 739, 773, 809, 877, 911, 947, 983, 1019, 1051, 1087, 1123, 1193, 1229, 1297, 1367, 1439, 1471, 1543, 1579, 1613, 1753, 1787, 1789, 1823, 1997, 1999, 2069, 2137
Offset: 1
Examples
37 = 2 (mod 5) = 2 (mod 7); 71 = 1 (mod 5) = 1 (mod 7); 73 = 3 (mod 5) = 3 (mod 7); 109 = 4 (mod 5) = 4 (mod 7).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p: p in PrimesUpTo(2500) | p mod 5 eq p mod 7]; // Vincenzo Librandi, Jan 17 2016
-
Maple
select(isprime, [seq(seq(35*i+j,j=1..4),i=0..1000)]); # Robert Israel, Jan 18 2016
-
Mathematica
Select[Prime[Range[100]],Mod[#,5]==Mod[#,7]&] Select[Prime[Range[100]],Mod[#,35]<5&]
-
PARI
isok(n) = isprime(n) && ((n % 5) == (n % 7)); \\ Michel Marcus, Jan 17 2016
-
PARI
lista(nn) = forprime(p=2, nn, if(p%5 == p%7, print1(p, ", "))); \\ Altug Alkan, Jan 18 2016
Comments