cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216292 Values of k such that there is exactly one prime between 10k and 10k + 9.

Original entry on oeis.org

9, 11, 12, 14, 18, 21, 24, 29, 30, 36, 39, 41, 42, 45, 47, 48, 55, 58, 63, 66, 68, 69, 71, 72, 74, 77, 78, 79, 80, 81, 83, 86, 87, 90, 92, 93, 95, 96, 98, 100, 102, 104, 105, 108, 111, 116, 117, 119, 120, 124, 125, 131, 137, 138, 139, 140, 144, 147, 151, 152
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Examples

			36 is in the sequence because between 360 and 369 there is exactly one prime: 367. [_Bruno Berselli_, Sep 04 2012]
		

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | IsOne(#PrimesInInterval(10*n, 10*n+9))]; // Bruno Berselli, Sep 04 2012
    
  • Mathematica
    t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[Length[ps] == 1, AppendTo[t, n]], {n, 0, 199}]; t (* T. D. Noe, Sep 03 2012 *)
    Select[Range[200],PrimePi[10#+9]-PrimePi[10#]==1&] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    is(n)=isprime(10*n+1)+isprime(10*n+3)+isprime(10*n+7)+isprime(10*n+9)==1 \\ Charles R Greathouse IV, Sep 07 2012
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A216292_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k: sum(int(isprime(10*k+i)) for i in (1,3,7,9)) == 1, count(max(1,startvalue)))
    A216292_list = list(islice(A216292_gen(),30)) # Chai Wah Wu, Sep 23 2022

Formula

a(n) ~ 0.1 n log n. - Charles R Greathouse IV, Sep 07 2012
a(n) = floor(A078494(n) / 10). - Charles R Greathouse IV, Sep 07 2012