A007811 Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.
1, 10, 19, 82, 148, 187, 208, 325, 346, 565, 943, 1300, 1564, 1573, 1606, 1804, 1891, 1942, 2101, 2227, 2530, 3172, 3484, 4378, 5134, 5533, 6298, 6721, 6949, 7222, 7726, 7969, 8104, 8272, 8881, 9784, 9913, 10111, 10984, 11653, 11929, 12220, 13546, 14416, 15727
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a007811 n = a007811_list !! (n-1) a007811_list = map (pred . head) $ filter (all (== 1) . map a010051') $ iterate (zipWith (+) [10, 10, 10, 10]) [1, 3, 7, 9] -- Reinhard Zumkeller, Jul 18 2014
-
Magma
[n: n in [0..10000] | forall{10*n+r: r in [1,3,7,9] | IsPrime(10*n+r)}]; // Bruno Berselli, Sep 04 2012
-
Maple
for n from 1 to 10000 do m := 10*n: if isprime(m+1) and isprime(m+3) and isprime(m+7) and isprime(m+9) then print(n); fi: od: quit
-
Mathematica
Select[ Range[ 1, 10000, 3 ], PrimeQ[ 10*#+1 ] && PrimeQ[ 10*#+3 ] && PrimeQ[ 10*#+7 ] && PrimeQ[ 10*#+9 ]& ] Select[Range[15000], And @@ PrimeQ /@ ({1, 3, 7, 9} + 10#) &] (* Ray Chandler, Jan 12 2007 *)
-
PARI
p=2;q=3;r=5;forprime(s=7,1e5,if(s-p==8 && r-p==6 && q-p==2 && p%10==1, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Mar 21 2013
-
Perl
use ntheory ":all"; my @s = map { ($-1)/10 } sieve_prime_cluster(10,1e9, 2,6,8); say for @s; # _Dana Jacobsen, May 04 2017
Formula
a(n) = 3*A014561(n) + 1. - Zak Seidov, Sep 21 2009
Comments