cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A007530 Prime quadruples: numbers k such that k, k+2, k+6, k+8 are all prime.

Original entry on oeis.org

5, 11, 101, 191, 821, 1481, 1871, 2081, 3251, 3461, 5651, 9431, 13001, 15641, 15731, 16061, 18041, 18911, 19421, 21011, 22271, 25301, 31721, 34841, 43781, 51341, 55331, 62981, 67211, 69491, 72221, 77261, 79691, 81041, 82721, 88811, 97841, 99131
Offset: 1

Views

Author

Keywords

Comments

Except for the first term, 5, all terms == 11 (mod 30). - Zak Seidov, Dec 04 2008
Some further values: For k = 1, ..., 10, a(k*10^3) = 11721791, 31210841, 54112601, 78984791, 106583831, 136466501, 165939791, 196512551, 230794301, 265201421. - M. F. Hasler, May 04 2009
k is the first prime of 2 consecutive twin prime pairs. - Daniel Forgues, Aug 01 2009
The prime quadruples of form p + (0, 2, 6, 8) have the quadruple congruence class (-1, +1, -1, +1) (mod 6). - Daniel Forgues, Aug 12 2009
s = (p+8)-(p) = 8 is the smallest s giving an admissible prime quadruple form, for which the only admissible form is p + (0, 2, 6, 8), since (0, 2, 6, 8) is the only form not covering all the congruence classes for any prime <= 4. Since s is smallest, these prime quadruples are prime constellations (or prime quadruplets), i.e., they contain consecutive primes. - Daniel Forgues, Aug 12 2009
Except for the first term, 5, all prime quadruples are of the form (15k-4, 15k-2, 15k+2, 15k+4), with k >= 1, and so are centered on 15k. - Daniel Forgues, Aug 12 2009
Subsequence of A022004. - R. J. Mathar, Feb 10 2013
The quadruplets are listed in A136162. - M. F. Hasler, Apr 20 2013
Starting at a(2) and examining the first 50 terms, (a(n)+4)/15 is a prime in 8 cases and a semiprime in 21; the last 18 terms have 2 primes and 11 semiprimes. Do the number of semiprimes continue to occur greater than mere chance? - J. M. Bergot, Apr 27 2015

Examples

			From _M. F. Hasler_, May 04 2009: (Start)
a(1)=5 is the start of the first prime quadruplet, {5,7,11,13}.
a(2)=11 is the start of the second prime quadruplet, {11,13,17,19}, and all other prime quadruplets differ from this one by a multiple of 30.
a(100)=470081 is the start of the 100th prime quadruplet;
a(500)=4370081 is the start of the 500th prime quadruplet.
a(167)=1002341 is the least quadruplet prime beyond 10^6. (End)
		

References

  • H. Rademacher, Lectures on Elementary Number Theory. Blaisdell, NY, 1964, p. 4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A159910 (first differences divided by 30), A120120, A007811, A014561.

Programs

  • Magma
    [ p: p in PrimesUpTo(11000)| IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8)] // Vincenzo Librandi, Nov 18 2010
    
  • Mathematica
    A007530 = Select[Range[1, 10^5 - 1, 2], Union[PrimeQ[# + {0, 2, 6, 8}]] == {True} &] (* Alonso del Arte, Sep 24 2011 *)
    Select[Prime[Range[10000]],AllTrue[#+{2,6,8},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    A007530( n, print_all=0, s=2 )={ my(p,q,r); until(!n--, until( p+8==s=nextprime(s+2), p=q; q=r; r=s); print_all && print1(p","));p} \\ The optional 3rd argument can be used to obtain large values by starting from some precomputed point instead of zero, using a(n+k) = A007530(k+1,,a(n)) (or A007530(k,,a(n)-1) for k>0); e.g., you get a(10^4+k) using A007530(k+1,,265201421) (value of a(10^4) from the comments section). - M. F. Hasler, May 04 2009
    
  • PARI
    forprime(p=2, 10^5, if(isprime(p+2) && isprime(p+6) && isprime(p+8), print1(p, ", "))) \\ Felix Fröhlich, Jun 22 2014
    
  • Python
    from sympy import primerange
    def aupto(limit):
      p, q, r, alst = 2, 3, 5, []
      for s in primerange(7, limit+9):
        if p+2 == q and p+6 == r and p+8 == s: alst.append(p)
        p, q, r = q, r, s
      return alst
    print(aupto(10**5)) # Michael S. Branicky, May 11 2021

Formula

a(n) = 11 + 30*A014561(n-1) for n > 1. - M. F. Hasler, May 04 2009

Extensions

More terms from Warut Roonguthai
Incorrect formula and Mathematica program removed by N. J. A. Sloane, Dec 04 2008, at the suggestion of Zak Seidov
Values up to a(1000) checked with the given PARI code by M. F. Hasler, May 04 2009

A032352 Numbers k such that there is no prime between 10*k and 10*k+9.

Original entry on oeis.org

20, 32, 51, 53, 62, 84, 89, 107, 113, 114, 126, 133, 134, 135, 141, 146, 150, 164, 167, 168, 171, 176, 179, 185, 189, 192, 196, 204, 207, 210, 218, 219, 232, 236, 240, 248, 249, 251, 256, 258, 282, 294, 298, 305, 309, 314, 315, 317, 323, 324, 326, 328, 342
Offset: 1

Views

Author

Keywords

Comments

Numbers k with property that appending any single decimal digit to k does not produce a prime.
A007920(n*10) > 10.

Examples

			m=32: 321=3*107, 323=17*19, 325=5*5*13, 327=3*109, 329=7*47, therefore 32 is a term.
		

Crossrefs

Cf. A124665 (subsequence), A010051, A007811, A216292, A216293.

Programs

  • Haskell
    a032352 n = a032352_list !! (n-1)
    a032352_list = filter
       (\x -> all (== 0) $ map (a010051 . (10*x +)) [1..9]) [1..]
    -- Reinhard Zumkeller, Oct 22 2011
    
  • Magma
    [n: n in [1..350] | IsZero(#PrimesInInterval(10*n, 10*n+9))]; // Bruno Berselli, Sep 04 2012
    
  • Maple
    a:=proc(n) if map(isprime,{seq(10*n+j,j=1..9)})={false} then n else fi end: seq(a(n),n=1..350); # Emeric Deutsch, Aug 01 2005
  • Mathematica
    f[n_] := PrimePi[10n + 10] - PrimePi[10n]; Select[ Range[342], f[ # ] == 0 &] (* Robert G. Wilson v, Sep 24 2004 *)
    Select[Range[342], NextPrime[10 # ] > 10 # + 9 &] (* Maciej Ireneusz Wilczynski, Jul 18 2010 *)
    Flatten@Position[10*#+{1,3,7,9}&/@Range@4000,{?CompositeQ ..}] (* _Hans Rudolf Widmer, Jul 06 2024 *)
  • PARI
    is(n)=!isprime(10*n+1) && !isprime(10*n+3) && !isprime(10*n+7) && !isprime(10*n+9) \\ Charles R Greathouse IV, Mar 29 2013
    
  • Python
    from sympy import isprime
    def aupto(limit):
      alst = []
      for d in range(2, limit+1):
        td = [10*d + j for j in [1, 3, 7, 9]]
        if not any(isprime(t) for t in td): alst.append(d)
      return alst
    print(aupto(342)) # Michael S. Branicky, May 30 2021

Formula

a(n) ~ n. - Charles R Greathouse IV, Mar 29 2013

Extensions

More terms from Miklos Kristof, Aug 27 2002

A014561 Numbers k giving rise to prime quadruples (30k+11, 30k+13, 30k+17, 30k+19).

Original entry on oeis.org

0, 3, 6, 27, 49, 62, 69, 108, 115, 188, 314, 433, 521, 524, 535, 601, 630, 647, 700, 742, 843, 1057, 1161, 1459, 1711, 1844, 2099, 2240, 2316, 2407, 2575, 2656, 2701, 2757, 2960, 3261, 3304, 3370, 3661, 3884, 3976, 4073, 4515, 4805, 5242, 5523, 5561, 5705
Offset: 1

Views

Author

Keywords

Comments

Intersection of A089160 and A089161. - Zak Seidov, Dec 22 2006
This can be seen as a condensed version of A007530, which lists the first member of the actual prime quadruplet (30x+11, 30x+13, 30x+17, 30x+19), x=a(n). - M. F. Hasler, Dec 05 2013
Comment from Frank Ellermann, Mar 13 2020: (Start)
Ignoring 2 and 3, {5,7,11,13} is the only twin-twin prime quadruple not following this pattern for primes > 5. One candidate mod 30 corresponds to 7 candidates mod 210, but 7 * 7 = 30 + 19, 7 * 11 = 60 + 17, 7 * 19 = 120 + 13, and 7 * 23 = 190 + 11 are multiples of 7, leaving only 3 candidates mod 210.
Likewise, 13 * 13 = 150 + 19 is a multiple of 13 mod 30030, but 5 + 1001 * k is a proper subset of 5 + 7 * k with 1001 = 13 * 11 * 7. Other disqualified candidates with nonzero k are:
13 * 17 = 210 + 11 for a(k) <> 7 + 1001 * k,
11 * 29 = 300 + 19 for a(k) <> 10 + 77 * k,
11 * 37 = 390 + 17 for a(k) <> 13 + 77 * k,
19 * 23 = 420 + 17 for a(k) <> 14 + 321321 * k,
17 * 31 = 510 + 17 for a(k) <> 17 + 17017 * k,
13 * 47 = 600 + 11 for a(k) <> 20 + 1001 * k,
11 * 59 = 630 + 19 for a(k) <> 21 + 77 * k, and
11 * 67 = 720 + 17 for a(k) <> 24 + 77 + k, picking the smallest prime factors 11, 17, 11 for {407, 527, 737} instead of 13, 23, 17 for {403, 529, 731}.
(End)

Examples

			a(4) = 27 for 27*30 = 810 yields twin primes at 810+11 = A001359(32) = A000040(142) and 810+17 = A001359(33) = A000040(144) ending at 810+19 = A000040(145).
		

Crossrefs

A100418 and A100423 are subsequences.

Programs

  • Mathematica
    a014561Q[n_Integer] :=
      If[And[PrimeQ[30 n + 11], PrimeQ[30 n + 13], PrimeQ[30 n + 17],
         PrimeQ[30 n + 19]] == True, True, False];
    a014561[n_Integer] :=
      Flatten[Position[Thread[a014561Q[Range[n]]], True]];
    a014561[1000] (* Michael De Vlieger, Jul 17 2014 *)
    Select[Range[0,6000],AllTrue[30#+{11,13,17,19},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 21 2016 *)
  • PARI
    isok(n) = isprime(30*n+11) && isprime(30*n+13) && isprime(30*n+17) && isprime(30*n+19) \\ Michel Marcus, Jun 09 2013

Formula

a(n) = (A007811(n) - 1)/3. - Zak Seidov, Sep 21 2009
a(n) = (A007530(n+1) - 11)/30 = floor(A007530(n+1)/30). - M. F. Hasler, Dec 05 2013
a(n) = A061668(n) - 1. - Hugo Pfoertner, Nov 03 2023

Extensions

More terms from Warut Roonguthai

A038800 Number of primes between 10n and 10n+9.

Original entry on oeis.org

4, 4, 2, 2, 3, 2, 2, 3, 2, 1, 4, 1, 1, 3, 1, 2, 2, 2, 1, 4, 0, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 3, 0, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 2, 0, 2, 0, 2, 1, 2, 2, 1, 2, 2, 3, 0, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 4, 1, 0, 3, 1, 1, 3, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1
Offset: 0

Views

Author

Keywords

Comments

If n runs through the primes, the subsequence 2, 2, 2, 3, 1, 3, 2, 4, 2, 1, 3, 2, 1, 3, 1, 0, 2, 3, 2,... is created. - R. J. Mathar, Jul 19 2012
Since 431, 433, and 439 are all prime, a(43)=3. - Bobby Jacobs, Sep 25 2016

Crossrefs

Positions of 4's: {0} U A007811.
Cf. A098592.

Programs

  • Mathematica
    Table[Count[Range[10 n, 10 n + 9], p_ /; PrimeQ@ p], {n, 0, 105}] (* Michael De Vlieger, Sep 25 2016 *)
    Table[PrimePi[10n+9]-PrimePi[10n],{n,0,120}] (* Harvey P. Dale, May 04 2025 *)
  • PARI
    a(n) = primepi(10*n+9) - primepi(10*n); \\ Michel Marcus, Sep 26 2016

Extensions

a(43) corrected by Bobby Jacobs, Sep 25 2016
a(101) and a(104) corrected by Michael De Vlieger, Sep 25 2016

A067267 Numbers n such that n, 10*n+1, 10*n+3, 10*n+7 and 10*n+9 are all primes.

Original entry on oeis.org

19, 6949, 10111, 15727, 20149, 24799, 26041, 26881, 29587, 29947, 40213, 41203, 44257, 46747, 47701, 49057, 50023, 51061, 55921, 66109, 66643, 73939, 76819, 79579, 95947, 106501, 110083, 111781, 112213, 114679
Offset: 1

Views

Author

Sudipta Das (juitech(AT)vsnl.net), Feb 21 2002

Keywords

Comments

All terms == 1 (mod 6). - Robert Israel, Jan 22 2018

Examples

			a(1)=19 because 191, 193, 197 and 199 are all prime.
		

Crossrefs

Cf. A007811.

Programs

  • Maple
    select(t -> andmap(isprime, [t,10*t+1,10*t+3,10*t+7,10*t+9]), [seq(i,i=1..2*10^5,6)]); # Robert Israel, Jan 22 2018
  • Mathematica
    okQ[n_]:=Module[{n10=10n},And@@PrimeQ[{n10+1,n10+3,n10+7,n10+9}]]
    Select[Prime[Range[20000]],okQ] (* Harvey P. Dale, Dec 13 2010 *)
    Select[Prime[Range[11000]],AllTrue[10#+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Feb 23 2022 *)

A173037 Numbers k such that k-4, k-2, k+2 and k+4 are prime.

Original entry on oeis.org

9, 15, 105, 195, 825, 1485, 1875, 2085, 3255, 3465, 5655, 9435, 13005, 15645, 15735, 16065, 18045, 18915, 19425, 21015, 22275, 25305, 31725, 34845, 43785, 51345, 55335, 62985, 67215, 69495, 72225, 77265, 79695, 81045, 82725, 88815, 97845
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 07 2010

Keywords

Comments

Average k of the four primes in two twin prime pairs (k-4, k-2) and (k+2, k+4) which are linked by the cousin prime pair (k-2, k+2).
All terms are odd composites; except for a(1) they are multiples of 5.
Subsequence of A087679, of A087680 and of A164385.
All terms except for a(1) are multiples of 15. - Zak Seidov, May 18 2014
One of (k-1, k, k+1) is always divisible by 7. - Fred Daniel Kline, Sep 24 2015
Terms other than a(1) must be equivalent to 1 mod 2, 0 mod 3, 0 mod 5, and 0,+/-1 mod 7. Taken together, this requires terms other than a(1) to have the form 210k+/-15 or 210k+105. However, not all numbers of that form belong to this sequence. - Keith Backman, Nov 09 2023

Examples

			9 is a term because 9-4 = 5 is prime, 9-2 = 7 is prime, 9+2 = 11 is prime and 9+4 = 13 is prime.
		

Crossrefs

Programs

  • Magma
    [ p+4: p in PrimesUpTo(100000) | IsPrime(p) and IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8) ]; // Klaus Brockhaus, Feb 09 2010
    
  • Mathematica
    Select[Range[100000],AllTrue[#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 30 2015 *)
  • PARI
    is(n)=isprime(n-4) && isprime(n-2) && isprime(n+2) && isprime(n+4) \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    from sympy import primerange
    def aupto(limit):
        p, q, r, alst = 2, 3, 5, []
        for s in primerange(7, limit+5):
            if p+2 == q and p+6 == r and p+8 == s: alst.append(p+4)
            p, q, r = q, r, s
        return alst
    print(aupto(10**5)) # Michael S. Branicky, Feb 03 2022

Formula

For n >= 2, a(n) = 15*A112540(n-1). - Michel Marcus, May 19 2014
From Jeppe Stig Nielsen, Feb 18 2020: (Start)
For n >= 2, a(n) = 30*A014561(n-1) + 15.
For n >= 2, a(n) = 10*A007811(n-1) + 5.
a(n) = A007530(n) + 4.
a(n) = A125855(n) + 5. (End)

Extensions

Edited and extended beyond a(9) by Klaus Brockhaus, Feb 09 2010

A008471 Exactly 3 out of 10m+1, 10m+3, 10m+7, 10m+9 are primes.

Original entry on oeis.org

4, 7, 13, 22, 31, 43, 46, 61, 64, 85, 88, 103, 106, 109, 130, 142, 145, 160, 166, 169, 178, 199, 238, 268, 271, 316, 367, 376, 391, 400, 409, 415, 421, 451, 472, 478, 493, 523, 541, 544, 547, 550, 574
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A125855 Numbers k such that k+1, k+3, k+7 and k+9 are all primes.

Original entry on oeis.org

4, 10, 100, 190, 820, 1480, 1870, 2080, 3250, 3460, 5650, 9430, 13000, 15640, 15730, 16060, 18040, 18910, 19420, 21010, 22270, 25300, 31720, 34840, 43780, 51340, 55330, 62980, 67210, 69490, 72220, 77260, 79690, 81040, 82720, 88810, 97840
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2006

Keywords

Comments

It seems that, with the exception of 4, all terms are multiples of 10. - Emeric Deutsch, Dec 24 2006
In fact, all terms except 4 are congruent to 10 (mod 30). - Franklin T. Adams-Watters, Jun 05 2014
For n > 1: a(n) = 10*A007811(n-1). - Reinhard Zumkeller, Jul 18 2014 [Comment corrected by Jens Kruse Andersen, Jul 19 2014]

Examples

			For k = 10, the numbers 10 + 1 = 11, 10 + 3 = 13, 10 + 7 = 17, 10 + 9 = 19 are prime. - _Marius A. Burtea_, May 18 2019
		

Crossrefs

Cf. A010051, A245304 (subsequence), A007811.

Programs

  • Haskell
    a125855 n = a125855_list !! (n-1)
    a125855_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [1, 1, 1, 1]) [1, 3, 7, 9]
    -- Reinhard Zumkeller, Jul 18 2014
    
  • Magma
    [n:n in [1..100000]| IsPrime(n+1) and IsPrime(n+3) and IsPrime(n+7) and IsPrime(n+9)]; // Marius A. Burtea, May 18 2019
    
  • Maple
    a:=proc(n): if isprime(n+1)=true and isprime(n+3)=true and isprime(n+7)=true and isprime(n+9)=true then n else fi end: seq(a(n),n=1..500000); # Emeric Deutsch, Dec 24 2006
  • Mathematica
    Do[If[(PrimeQ[x + 1]) && (PrimeQ[x + 3]) && (PrimeQ[x + 7]) && (PrimeQ[x + 9]), Print[x]], {x, 1, 10000}]
    (* Second program *)
    Select[Range[10^5], Times @@ Boole@ Map[PrimeQ, # + {1, 3, 7, 9}] == 1 &] (* Michael De Vlieger, Jun 12 2017 *)
    Select[Range[100000],AllTrue[#+{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    is(n) = my(v=[1, 3, 7, 9]); for(t=1, #v, if(!ispseudoprime(n+v[t]), return(0))); 1 \\ Felix Fröhlich, May 18 2019

Formula

a(n) = A007530(n) - 1. - R. J. Mathar, Jun 14 2017

Extensions

More terms from Emeric Deutsch, Dec 24 2006

A216292 Values of k such that there is exactly one prime between 10k and 10k + 9.

Original entry on oeis.org

9, 11, 12, 14, 18, 21, 24, 29, 30, 36, 39, 41, 42, 45, 47, 48, 55, 58, 63, 66, 68, 69, 71, 72, 74, 77, 78, 79, 80, 81, 83, 86, 87, 90, 92, 93, 95, 96, 98, 100, 102, 104, 105, 108, 111, 116, 117, 119, 120, 124, 125, 131, 137, 138, 139, 140, 144, 147, 151, 152
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Examples

			36 is in the sequence because between 360 and 369 there is exactly one prime: 367. [_Bruno Berselli_, Sep 04 2012]
		

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | IsOne(#PrimesInInterval(10*n, 10*n+9))]; // Bruno Berselli, Sep 04 2012
    
  • Mathematica
    t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[Length[ps] == 1, AppendTo[t, n]], {n, 0, 199}]; t (* T. D. Noe, Sep 03 2012 *)
    Select[Range[200],PrimePi[10#+9]-PrimePi[10#]==1&] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    is(n)=isprime(10*n+1)+isprime(10*n+3)+isprime(10*n+7)+isprime(10*n+9)==1 \\ Charles R Greathouse IV, Sep 07 2012
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A216292_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k: sum(int(isprime(10*k+i)) for i in (1,3,7,9)) == 1, count(max(1,startvalue)))
    A216292_list = list(islice(A216292_gen(),30)) # Chai Wah Wu, Sep 23 2022

Formula

a(n) ~ 0.1 n log n. - Charles R Greathouse IV, Sep 07 2012
a(n) = floor(A078494(n) / 10). - Charles R Greathouse IV, Sep 07 2012

A216293 Values of k such that there are exactly two primes between 10k and 10k + 9.

Original entry on oeis.org

2, 3, 5, 6, 8, 15, 16, 17, 23, 25, 26, 27, 28, 33, 34, 35, 37, 38, 40, 44, 49, 50, 52, 54, 56, 57, 59, 60, 65, 67, 70, 73, 75, 76, 91, 94, 97, 99, 101, 110, 112, 115, 118, 121, 122, 123, 127, 128, 129, 132, 136, 143, 149, 154, 155, 157, 161, 162, 172, 174
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Examples

			23 is in the sequence because between 230 and 239 there are exactly two primes: 233 and 239. [_Bruno Berselli_, Sep 04 2012]
		

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | #PrimesInInterval(10*n, 10*n+9) eq 2]; // Bruno Berselli, Sep 04 2012
  • Mathematica
    t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[Length[ps] == 2, AppendTo[t, n]], {n, 0, 229}]; t (* T. D. Noe, Sep 03 2012 *)
    Select[Range[200],Count[Range[10#,10#+9],?PrimeQ]==2&] (* _Harvey P. Dale, Jan 19 2017 *)

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Sep 07 2012
Showing 1-10 of 53 results. Next