cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007811 Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.

Original entry on oeis.org

1, 10, 19, 82, 148, 187, 208, 325, 346, 565, 943, 1300, 1564, 1573, 1606, 1804, 1891, 1942, 2101, 2227, 2530, 3172, 3484, 4378, 5134, 5533, 6298, 6721, 6949, 7222, 7726, 7969, 8104, 8272, 8881, 9784, 9913, 10111, 10984, 11653, 11929, 12220, 13546, 14416, 15727
Offset: 1

Views

Author

N. J. A. Sloane and J. H. Conway, Mar 15 1996

Keywords

Crossrefs

Programs

  • Haskell
    a007811 n = a007811_list !! (n-1)
    a007811_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [10, 10, 10, 10]) [1, 3, 7, 9]
    -- Reinhard Zumkeller, Jul 18 2014
    
  • Magma
    [n: n in [0..10000] | forall{10*n+r: r in [1,3,7,9] | IsPrime(10*n+r)}]; // Bruno Berselli, Sep 04 2012
    
  • Maple
    for n from 1 to 10000 do m := 10*n: if isprime(m+1) and isprime(m+3) and isprime(m+7) and isprime(m+9) then print(n); fi: od: quit
  • Mathematica
    Select[ Range[ 1, 10000, 3 ], PrimeQ[ 10*#+1 ] && PrimeQ[ 10*#+3 ] && PrimeQ[ 10*#+7 ] && PrimeQ[ 10*#+9 ]& ]
    Select[Range[15000], And @@ PrimeQ /@ ({1, 3, 7, 9} + 10#) &] (* Ray Chandler, Jan 12 2007 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e5,if(s-p==8 && r-p==6 && q-p==2 && p%10==1, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Mar 21 2013
    
  • Perl
    use ntheory ":all"; my @s = map { ($-1)/10 } sieve_prime_cluster(10,1e9, 2,6,8); say for @s; # _Dana Jacobsen, May 04 2017

Formula

a(n) = 3*A014561(n) + 1. - Zak Seidov, Sep 21 2009

A173037 Numbers k such that k-4, k-2, k+2 and k+4 are prime.

Original entry on oeis.org

9, 15, 105, 195, 825, 1485, 1875, 2085, 3255, 3465, 5655, 9435, 13005, 15645, 15735, 16065, 18045, 18915, 19425, 21015, 22275, 25305, 31725, 34845, 43785, 51345, 55335, 62985, 67215, 69495, 72225, 77265, 79695, 81045, 82725, 88815, 97845
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 07 2010

Keywords

Comments

Average k of the four primes in two twin prime pairs (k-4, k-2) and (k+2, k+4) which are linked by the cousin prime pair (k-2, k+2).
All terms are odd composites; except for a(1) they are multiples of 5.
Subsequence of A087679, of A087680 and of A164385.
All terms except for a(1) are multiples of 15. - Zak Seidov, May 18 2014
One of (k-1, k, k+1) is always divisible by 7. - Fred Daniel Kline, Sep 24 2015
Terms other than a(1) must be equivalent to 1 mod 2, 0 mod 3, 0 mod 5, and 0,+/-1 mod 7. Taken together, this requires terms other than a(1) to have the form 210k+/-15 or 210k+105. However, not all numbers of that form belong to this sequence. - Keith Backman, Nov 09 2023

Examples

			9 is a term because 9-4 = 5 is prime, 9-2 = 7 is prime, 9+2 = 11 is prime and 9+4 = 13 is prime.
		

Crossrefs

Programs

  • Magma
    [ p+4: p in PrimesUpTo(100000) | IsPrime(p) and IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8) ]; // Klaus Brockhaus, Feb 09 2010
    
  • Mathematica
    Select[Range[100000],AllTrue[#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 30 2015 *)
  • PARI
    is(n)=isprime(n-4) && isprime(n-2) && isprime(n+2) && isprime(n+4) \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    from sympy import primerange
    def aupto(limit):
        p, q, r, alst = 2, 3, 5, []
        for s in primerange(7, limit+5):
            if p+2 == q and p+6 == r and p+8 == s: alst.append(p+4)
            p, q, r = q, r, s
        return alst
    print(aupto(10**5)) # Michael S. Branicky, Feb 03 2022

Formula

For n >= 2, a(n) = 15*A112540(n-1). - Michel Marcus, May 19 2014
From Jeppe Stig Nielsen, Feb 18 2020: (Start)
For n >= 2, a(n) = 30*A014561(n-1) + 15.
For n >= 2, a(n) = 10*A007811(n-1) + 5.
a(n) = A007530(n) + 4.
a(n) = A125855(n) + 5. (End)

Extensions

Edited and extended beyond a(9) by Klaus Brockhaus, Feb 09 2010

A245304 Numbers m such that m+1, m+3, m+7, m+9 and m+13 are all primes.

Original entry on oeis.org

4, 10, 100, 1480, 16060, 19420, 21010, 22270, 43780, 55330, 144160, 165700, 166840, 195730, 201820, 225340, 247600, 268810, 326140, 347980, 361210, 397750, 465160, 518800, 536440, 633460, 633790, 661090, 768190, 795790, 829720, 857950, 876010, 958540
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2014

Keywords

References

  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #82, variant.

Crossrefs

Cf. A010051, A022006, A245305, A007811, subsequence of A125855.

Programs

  • Haskell
    a245304 n = a245304_list !! (n-1)
    a245304_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [1, 1, 1, 1, 1]) [1, 3, 7, 9, 13]
    
  • Magma
    [n: n in [0..10^6] | IsPrime(n+1) and IsPrime(n+3) and IsPrime(n+7) and IsPrime(n+9) and IsPrime(n+13)]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    Select[Range[10^6],AllTrue[#+{1,3,7,9,13},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 07 2015 *)
  • PARI
    forprime(p=2, 10^7, m=p-1; if(isprime(m+3)&&isprime(m+7)&&isprime(m+9)&&isprime(m+13), print1(m", "))) \\ Jens Kruse Andersen, Jul 18 2014
    

Formula

a(n) = A022006(n)-1. - Jens Kruse Andersen, Jul 18 2014

A245305 Numbers k such that 4k+1, 4k+3, and 6k+5 are all primes.

Original entry on oeis.org

1, 4, 7, 37, 142, 154, 202, 214, 307, 424, 469, 487, 499, 559, 577, 664, 742, 814, 847, 979, 982, 1054, 1129, 1159, 1162, 1252, 1369, 1522, 1612, 1642, 1672, 1837, 1987, 2107, 2134, 2149, 2209, 2242, 2359, 2407, 2419, 2482, 2632, 2677, 2767, 2887, 2929, 2944
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2014

Keywords

Comments

Sequence is infinite (Sierpiński).
Infinitude of the sequence would follow from Dickson's (unproved) conjecture. - Jens Kruse Andersen, Jul 18 2014

References

  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Pergamon, 1964, p. 52, #15.

Crossrefs

Programs

  • Haskell
    a245305 n = a245305_list !! (n-1)
    a245305_list = map ((`div` 4) . (subtract 1) . head) $
       filter (all (== 1) . map a010051') $
              iterate (zipWith (+) [4, 4, 6]) [1, 3, 5]
    
  • Magma
    [n: n in [0..3*10^3] | IsPrime(4*n+1) and IsPrime(4*n+3) and IsPrime(6*n+5)]; // Vincenzo Librandi, Jun 15 2015
    
  • Mathematica
    Select[Range[0, 3000], PrimeQ[4 # + 1] && PrimeQ[4 # + 3] && PrimeQ[6 # + 5] &] (* Vincenzo Librandi, Jun 15 2015 *)
  • PARI
    isok(k) = isprime(4*k+1) && isprime(4*k+3) && isprime(6*k+5); \\ Michel Marcus, Jan 24 2022

A125856 a(n) = least number k such that k^(2^n)+1, k^(2^n)+3, k^(2^n)+7 and k^(2^n)+9 are all prime.

Original entry on oeis.org

4, 2, 83270, 5241160, 57171410, 359829200
Offset: 0

Views

Author

Artur Jasinski, Dec 12 2006

Keywords

Comments

In 1958, Schinzel showed that for each n>0, there are infinitely many primes among the numbers k^(2^n)+{1,3,7, or 9}.

References

  • Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42.

Crossrefs

Programs

  • PARI
    a(n) = {k = 1; while(!isprime(k^(2^n)+1) || !isprime(k^(2^n)+3) || !isprime(k^(2^n)+7) || !isprime(k^(2^n)+9), k++); k;} \\ Michel Marcus, Nov 03 2013

Extensions

Edited by Don Reble, Dec 16 2006
One more term from Farideh Firoozbakht, Jan 01 2007
Showing 1-5 of 5 results.