cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007811 Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.

Original entry on oeis.org

1, 10, 19, 82, 148, 187, 208, 325, 346, 565, 943, 1300, 1564, 1573, 1606, 1804, 1891, 1942, 2101, 2227, 2530, 3172, 3484, 4378, 5134, 5533, 6298, 6721, 6949, 7222, 7726, 7969, 8104, 8272, 8881, 9784, 9913, 10111, 10984, 11653, 11929, 12220, 13546, 14416, 15727
Offset: 1

Views

Author

N. J. A. Sloane and J. H. Conway, Mar 15 1996

Keywords

Crossrefs

Programs

  • Haskell
    a007811 n = a007811_list !! (n-1)
    a007811_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [10, 10, 10, 10]) [1, 3, 7, 9]
    -- Reinhard Zumkeller, Jul 18 2014
    
  • Magma
    [n: n in [0..10000] | forall{10*n+r: r in [1,3,7,9] | IsPrime(10*n+r)}]; // Bruno Berselli, Sep 04 2012
    
  • Maple
    for n from 1 to 10000 do m := 10*n: if isprime(m+1) and isprime(m+3) and isprime(m+7) and isprime(m+9) then print(n); fi: od: quit
  • Mathematica
    Select[ Range[ 1, 10000, 3 ], PrimeQ[ 10*#+1 ] && PrimeQ[ 10*#+3 ] && PrimeQ[ 10*#+7 ] && PrimeQ[ 10*#+9 ]& ]
    Select[Range[15000], And @@ PrimeQ /@ ({1, 3, 7, 9} + 10#) &] (* Ray Chandler, Jan 12 2007 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e5,if(s-p==8 && r-p==6 && q-p==2 && p%10==1, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Mar 21 2013
    
  • Perl
    use ntheory ":all"; my @s = map { ($-1)/10 } sieve_prime_cluster(10,1e9, 2,6,8); say for @s; # _Dana Jacobsen, May 04 2017

Formula

a(n) = 3*A014561(n) + 1. - Zak Seidov, Sep 21 2009

A245304 Numbers m such that m+1, m+3, m+7, m+9 and m+13 are all primes.

Original entry on oeis.org

4, 10, 100, 1480, 16060, 19420, 21010, 22270, 43780, 55330, 144160, 165700, 166840, 195730, 201820, 225340, 247600, 268810, 326140, 347980, 361210, 397750, 465160, 518800, 536440, 633460, 633790, 661090, 768190, 795790, 829720, 857950, 876010, 958540
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2014

Keywords

References

  • W. SierpiƄski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #82, variant.

Crossrefs

Cf. A010051, A022006, A245305, A007811, subsequence of A125855.

Programs

  • Haskell
    a245304 n = a245304_list !! (n-1)
    a245304_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [1, 1, 1, 1, 1]) [1, 3, 7, 9, 13]
    
  • Magma
    [n: n in [0..10^6] | IsPrime(n+1) and IsPrime(n+3) and IsPrime(n+7) and IsPrime(n+9) and IsPrime(n+13)]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    Select[Range[10^6],AllTrue[#+{1,3,7,9,13},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 07 2015 *)
  • PARI
    forprime(p=2, 10^7, m=p-1; if(isprime(m+3)&&isprime(m+7)&&isprime(m+9)&&isprime(m+13), print1(m", "))) \\ Jens Kruse Andersen, Jul 18 2014
    

Formula

a(n) = A022006(n)-1. - Jens Kruse Andersen, Jul 18 2014
Showing 1-2 of 2 results.