cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350541 Twin primes x, represented by their average, such that x is the first and x+18 the last of three successive twins.

Original entry on oeis.org

12, 180, 810, 5640, 9420, 18042, 62970, 88800, 97842, 109830, 165702, 284730, 392262, 452520, 626610, 663570, 663582, 855720, 983430, 1002342, 1003350, 1068702, 1146780, 1155612, 1322160, 1329702, 1592862, 1678752, 1718862, 1748472, 2116560, 2144490
Offset: 1

Views

Author

Gerhard Kirchner, Jan 06 2022

Keywords

Comments

Subsequence of A014574. For x>6, d=18 is the least possible difference between the least and the greatest of three twins. For d=12, one of the six terms 6*k+-1, 6*k+6+-1,6*k+12+-1 would be divisible by 5. Therefore, d>12, except for x=6.
The distribution of 35314 terms < 10^11 is in accordance with the k-tuple conjecture, see links "k-tuple conjecture" and "Test of the k-tuple conjecture".
Generalizations:
Twin primes x such that x is the first and x+d the last of m successive twins.
m d
1 0 A014574(n) twin primes
2 6 A173037(n)-3
3 12 Only one quadruple: (6,12,18,30)
3 18 Current sequence
4 24 Only one quintuple: (6,12,18,30,42)
4 30 A350542
5 36 See A350543
5 42 See A350543
5 48 A350543

Examples

			Triples of twins Example   6-tuple of primes
(x,x+ 6,x+18)     x= 12   (11,13,17,19,29,31)
(x,x+12,x+18)     x=180   (179,181,191,193,197,199)
		

Crossrefs

Programs

A173092 Numbers k such that 3k-4, 3k-2, 3k+2, and 3k+4 are primes.

Original entry on oeis.org

3, 5, 35, 65, 275, 495, 625, 695, 1085, 1155, 1885, 3145, 4335, 5215, 5245, 5355, 6015, 6305, 6475, 7005, 7425, 8435, 10575, 11615, 14595, 17115, 18445, 20995, 22405, 23165, 24075, 25755, 26565, 27015, 27575, 29605, 32615, 33045, 33705, 36615, 38845, 39765, 40735, 45155, 48055, 52425
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 10 2010, Feb 19 2010

Keywords

Examples

			3 is a term because 3*3-4=5, 3*3-2=7, 3*3+2=11, and 3*3+4=13 are all prime.
		

Crossrefs

Cf. A173037.

Programs

  • Magma
    [ n: n in [0..60000] | IsPrime(3*n-2) and IsPrime(3*n+2) and IsPrime(3*n-4) and IsPrime(3*n+4) ]; // Vincenzo Librandi, Dec 04 2010
  • Mathematica
    Select[Range[10^5], PrimeQ[3# - 4]&&PrimeQ[3# - 2] && PrimeQ[3# + 2] && PrimeQ[3# + 4]&] (* Alonso del Arte, Dec 04 2010 *)

Formula

a(n) = A173037(n)/3.

Extensions

Entries checked by D. S. McNeil, Nov 26 2010
Extended by Vincenzo Librandi and Charles R Greathouse IV, Mar 25 2010

A350542 Twin primes x, represented by their average, such that x is the first and x+30 the last of four successive twins.

Original entry on oeis.org

12, 626598, 663570, 1322148, 2144478, 2668218, 6510192, 6937938, 10187910, 11495580, 11721768, 18873498, 18873510, 25658430, 39659532, 39851292, 46533468, 80572158, 84099318, 86944602, 91814712, 93956100, 123911532, 128469150, 129902022, 148979838
Offset: 1

Views

Author

Gerhard Kirchner, Jan 07 2022

Keywords

Comments

Subsequence of A014574. For x>6, d=30 is the least possible difference between the least and the greatest of four twins. With d=24, six primes would have the form 6*k+-1, 6*k+6+-1,6*k+12+-1 which is impossible because one of the six numbers would be divisible by 5. Therefore, d>24, except for x=6. The distribution of 1134 terms < 10^11 is in accordance with the k-tuple conjecture, see links "k-tuple conjecture" and A350541, "Test of the k-tuple conjecture".
Generalization:
Twin primes x such that x is the first and x+d the last of m successive twins.
m d
1 0 A014574(n) twin primes
2 6 A173037(n)-3
3 12 Only one quadruple: (6,12,18,30)
3 18 A350541
4 24 Only one quintuple: (6,12,18,30,42)
4 30 Current sequence
5 36 See A350543
5 42 See A350543
5 48 A350543

Examples

			Quadruples of twins  Example       8-tuple of primes
(x,x+ 6,x+18,x+30)   x=12      (11,13,17,19,29,31,41,43)
(x,x+12,x+24,x+30)   x=626598  (x-1,x+1,x+11,x+13,x+23,x+25,x+29,x+31)
(x,x+12,x+18,x+30)   x=663570  (x-1,x+1,x+11,x+13,x+17,x+19,x+29,x+31)
(x,x+ 6,x+24,x+30), (x,x+6,x+12,x+30) and (x,x+18,x+24,x+30) do not occur for divisibility reasons.
		

Crossrefs

Programs

A350543 Twin primes x, represented by their average, such that x is the first and x+48 the last of five successive twins.

Original entry on oeis.org

12, 3919212, 325267932, 905119332, 2013256362, 3066212112, 3240097962, 4046054430, 6567515370, 7561533402, 10816172202, 10895874132, 17444777880, 20905115040, 22194295812, 23641113912, 26079344100, 26368755222, 27350615220, 29861090682, 33240296052
Offset: 1

Views

Author

Gerhard Kirchner, Jan 07 2022

Keywords

Comments

Subsequence of A014574. The terms represent quintuples of twin primes. As there are only 31 terms < 10^11, the accordance with the k-tuple conjecture is not very good, see links "k-tuple conjecture" and A350541, "Test of the k-tuple conjecture". Moreover, the formalism of the conjecture allows the evaluation of the expected frequencies of eight types of quintuples relative to the frequency of all quintuples. The differences are considerable:
relative frequencies
Example observed expected
(1) 11/31=35.5% 23.7%
(2) 5/31=16.1% 15.0%
(3) 3/31= 9.7% 7.5%
(4) 6/31=19.4% 23.7%
(5) 3/31= 9.7% 15.0%
(6) 2/31= 6.5% 3.8%
(7) 1/31= 3.2% 7.5%
(8) 0 3.8%
Generalization:
Twin primes x such that x is the first and x+d the last of m successive twins.
m d
1 0 A014574(n) twin primes
2 6 A173037(n)-3
3 12 Only one quadruple: (6,12,18,30)
3 18 A350541
4 24 Only one quintuple: (6,12,18,30,42)
4 30 A350542
5 36 6, 39713433660, 66419473020, 71525244600*
5 42 18873492, 180929682, 1170073332, 2550576612, 5807487204, 27523454232, 33497368554, 50062053714, 63167632254, 86883508944, 99939276954*
5 48 Current sequence
Annotations:
*The number of terms < 10^11 is too small for submitting a new sequence.
(m=5,d=30) is empty for divisibility reasons.

Examples

			The quintuples of twins have the form (x,x+a,x+b,x+c,x+d)
  (a,b,c,d)      least example
(1)  6,18,30,48  x=           12
(2)  6,30,36,48  x=    123919212
(3)  6,18,36,48  x= 123240097962
(4) 18,30,42,48  x= 124046054430
(5) 12,18,42,48  x=1217444777880
(6) 12,18,30,48  x=1220905115040
(7) 12,30,42,48  x=1227350615220
(8) 18,30,42,48  x>10^11
		

Crossrefs

Programs

  • Maxima
    block(twin:[6], n:1,  p1:11,  j2:1, nmax: 3,
    /*returns nmax terms*/
    m:5, d:48, w: makelist(-d, i, 1, m),
    while n
    				

A178082 Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.

Original entry on oeis.org

3, 21, 39, 165, 297, 375, 417, 651, 693, 1131, 1887, 2601, 3129, 3147, 3213, 3609, 3783, 3885, 4203, 4455, 5061, 6345, 6969, 8757, 10269, 11067, 12597, 13443, 13899, 14445, 15453, 15939, 16209, 16545, 17763, 19569, 19827, 20223, 21969, 23307
Offset: 1

Views

Author

Roger L. Bagula, May 19 2010

Keywords

Examples

			The associated prime quadruplets start as:
     11,    13,    17,    19;   (for n =  3)
    101,   103,   107,   109;   (for n = 21)
    191,   193,   197,   199;   (for n = 39)
    821,   823,   827,   829;
   1481,  1483,  1487,  1489;
   1871,  1873,  1877,  1879;
   2081,  2083,  2087,  2089;
   3251,  3253,  3257,  3259;
   3461,  3463,  3467,  3469;
   5651,  5653,  5657,  5659;
   9431,  9433,  9437,  9439;
  13001, 13003, 13007, 13009;
  15641, 15643, 15647, 15649;
  15731, 15733, 15737, 15739;
  16061, 16063, 16067, 16069;
  18041, 18043, 18047, 18049;
  18911, 18913, 18917, 18919;
  19421, 19423, 19427, 19429.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; // Vincenzo Librandi, Nov 30 2010
  • Mathematica
    Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]
    Select[Range[25000],AllTrue[5#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2018 *)

Formula

a(n) = A173037(n+1)/5.

A173135 Primes other than 3 and 5.

Original entry on oeis.org

2, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 10 2010

Keywords

Crossrefs

Programs

Extensions

Better definition from Charles R Greathouse IV, Mar 24 2010, corrected Apr 22 2010

A176002 Numbers n such that 15*prime(n)+{-4,-2,2,4} are all primes.

Original entry on oeis.org

4, 6, 34, 176, 608, 1023, 1338, 1377, 1555, 1980, 2054, 2850, 2893, 3061, 3263, 3572, 3977, 4029, 4244, 4405, 6099, 6548, 7203, 7348, 7350, 7572, 7574, 9028, 10657, 11976, 12215, 12874, 13247, 13388, 13432, 14537, 14813, 15115, 15412, 15509
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2010

Keywords

Comments

Numbers n such that 15*prime(n)-4, 15*prime(n)-2, 15*prime(n)+2 and 15*prime(n)+4 are primes.

Examples

			a(1)=4 because 15*prime(4)-4=101, 15*prime(4)-2=103, 15*prime(4)+2=107 and 15*prime(4)+4=109.
		

Crossrefs

Programs

  • Mathematica
    p15Q[n_]:=And@@PrimeQ/@(15 Prime[n]+{-4,-2,2,4}); Select[Range[16000], p15Q]  (* Harvey P. Dale, Mar 20 2011 *)

Formula

A000040(a(n))=A112540(k).

Extensions

More terms from R. J. Mathar, Apr 16 2010
Showing 1-7 of 7 results.