A350541
Twin primes x, represented by their average, such that x is the first and x+18 the last of three successive twins.
Original entry on oeis.org
12, 180, 810, 5640, 9420, 18042, 62970, 88800, 97842, 109830, 165702, 284730, 392262, 452520, 626610, 663570, 663582, 855720, 983430, 1002342, 1003350, 1068702, 1146780, 1155612, 1322160, 1329702, 1592862, 1678752, 1718862, 1748472, 2116560, 2144490
Offset: 1
Triples of twins Example 6-tuple of primes
(x,x+ 6,x+18) x= 12 (11,13,17,19,29,31)
(x,x+12,x+18) x=180 (179,181,191,193,197,199)
-
Select[Prime@Range[4,160000],Count[Range[#,#+18],?(PrimeQ@#&&PrimeQ[#+2]&)]==3&]+1 (* _Giorgos Kalogeropoulos, Jan 07 2022 *)
-
block(twin:[], n:0, p1:11, j2:1, nmax: 3,
/*returns nmax terms*/
m:3, d:18, w: makelist(-d,i,1,m),
while n
A173092
Numbers k such that 3k-4, 3k-2, 3k+2, and 3k+4 are primes.
Original entry on oeis.org
3, 5, 35, 65, 275, 495, 625, 695, 1085, 1155, 1885, 3145, 4335, 5215, 5245, 5355, 6015, 6305, 6475, 7005, 7425, 8435, 10575, 11615, 14595, 17115, 18445, 20995, 22405, 23165, 24075, 25755, 26565, 27015, 27575, 29605, 32615, 33045, 33705, 36615, 38845, 39765, 40735, 45155, 48055, 52425
Offset: 1
3 is a term because 3*3-4=5, 3*3-2=7, 3*3+2=11, and 3*3+4=13 are all prime.
-
[ n: n in [0..60000] | IsPrime(3*n-2) and IsPrime(3*n+2) and IsPrime(3*n-4) and IsPrime(3*n+4) ]; // Vincenzo Librandi, Dec 04 2010
-
Select[Range[10^5], PrimeQ[3# - 4]&&PrimeQ[3# - 2] && PrimeQ[3# + 2] && PrimeQ[3# + 4]&] (* Alonso del Arte, Dec 04 2010 *)
A350542
Twin primes x, represented by their average, such that x is the first and x+30 the last of four successive twins.
Original entry on oeis.org
12, 626598, 663570, 1322148, 2144478, 2668218, 6510192, 6937938, 10187910, 11495580, 11721768, 18873498, 18873510, 25658430, 39659532, 39851292, 46533468, 80572158, 84099318, 86944602, 91814712, 93956100, 123911532, 128469150, 129902022, 148979838
Offset: 1
Quadruples of twins Example 8-tuple of primes
(x,x+ 6,x+18,x+30) x=12 (11,13,17,19,29,31,41,43)
(x,x+12,x+24,x+30) x=626598 (x-1,x+1,x+11,x+13,x+23,x+25,x+29,x+31)
(x,x+12,x+18,x+30) x=663570 (x-1,x+1,x+11,x+13,x+17,x+19,x+29,x+31)
(x,x+ 6,x+24,x+30), (x,x+6,x+12,x+30) and (x,x+18,x+24,x+30) do not occur for divisibility reasons.
-
Select[Prime@Range[4,200000], Count[Range[#,#+30],?(PrimeQ@#&&PrimeQ[#+2]&)]==4&]+1 (* _Giorgos Kalogeropoulos, Jan 07 2022 *)
-
block(twin:[], n:0, p1:11, j2:1, nmax: 3,
/*returns nmax terms*/
m:4, d:30, w: makelist(-d,i,1,m),
while n
A350543
Twin primes x, represented by their average, such that x is the first and x+48 the last of five successive twins.
Original entry on oeis.org
12, 3919212, 325267932, 905119332, 2013256362, 3066212112, 3240097962, 4046054430, 6567515370, 7561533402, 10816172202, 10895874132, 17444777880, 20905115040, 22194295812, 23641113912, 26079344100, 26368755222, 27350615220, 29861090682, 33240296052
Offset: 1
The quintuples of twins have the form (x,x+a,x+b,x+c,x+d)
(a,b,c,d) least example
(1) 6,18,30,48 x= 12
(2) 6,30,36,48 x= 123919212
(3) 6,18,36,48 x= 123240097962
(4) 18,30,42,48 x= 124046054430
(5) 12,18,42,48 x=1217444777880
(6) 12,18,30,48 x=1220905115040
(7) 12,30,42,48 x=1227350615220
(8) 18,30,42,48 x>10^11
-
block(twin:[6], n:1, p1:11, j2:1, nmax: 3,
/*returns nmax terms*/
m:5, d:48, w: makelist(-d, i, 1, m),
while n
A178082
Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.
Original entry on oeis.org
3, 21, 39, 165, 297, 375, 417, 651, 693, 1131, 1887, 2601, 3129, 3147, 3213, 3609, 3783, 3885, 4203, 4455, 5061, 6345, 6969, 8757, 10269, 11067, 12597, 13443, 13899, 14445, 15453, 15939, 16209, 16545, 17763, 19569, 19827, 20223, 21969, 23307
Offset: 1
The associated prime quadruplets start as:
11, 13, 17, 19; (for n = 3)
101, 103, 107, 109; (for n = 21)
191, 193, 197, 199; (for n = 39)
821, 823, 827, 829;
1481, 1483, 1487, 1489;
1871, 1873, 1877, 1879;
2081, 2083, 2087, 2089;
3251, 3253, 3257, 3259;
3461, 3463, 3467, 3469;
5651, 5653, 5657, 5659;
9431, 9433, 9437, 9439;
13001, 13003, 13007, 13009;
15641, 15643, 15647, 15649;
15731, 15733, 15737, 15739;
16061, 16063, 16067, 16069;
18041, 18043, 18047, 18049;
18911, 18913, 18917, 18919;
19421, 19423, 19427, 19429.
-
[n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; // Vincenzo Librandi, Nov 30 2010
-
Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]
Select[Range[25000],AllTrue[5#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2018 *)
A173135
Primes other than 3 and 5.
Original entry on oeis.org
2, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1
A176002
Numbers n such that 15*prime(n)+{-4,-2,2,4} are all primes.
Original entry on oeis.org
4, 6, 34, 176, 608, 1023, 1338, 1377, 1555, 1980, 2054, 2850, 2893, 3061, 3263, 3572, 3977, 4029, 4244, 4405, 6099, 6548, 7203, 7348, 7350, 7572, 7574, 9028, 10657, 11976, 12215, 12874, 13247, 13388, 13432, 14537, 14813, 15115, 15412, 15509
Offset: 1
a(1)=4 because 15*prime(4)-4=101, 15*prime(4)-2=103, 15*prime(4)+2=107 and 15*prime(4)+4=109.
-
p15Q[n_]:=And@@PrimeQ/@(15 Prime[n]+{-4,-2,2,4}); Select[Range[16000], p15Q] (* Harvey P. Dale, Mar 20 2011 *)
Showing 1-7 of 7 results.
Comments