A216324 One half of the radical (squarefree kernel) of the abc-triples (a=1, b(n) = A216323(n), c(n) = 1 + b(n)).
3, 21, 21, 15, 105, 33, 51, 57, 195, 195, 273, 465, 205, 285, 987, 105, 1155, 897, 651, 1365, 105, 357, 1185, 615, 715, 665, 2345, 4395, 2037, 1155, 3003, 897, 1239, 3255, 2667, 8463, 5691, 7755, 2415, 4305, 11985, 4123
Offset: 1
Keywords
Examples
2*105 = 2*a(21) = r(1,4374,4375) = 1*6*35 = 210.
Links
- Wolfdieter Lang, Maple program for radical of a*b*(a+b) .
Crossrefs
Cf. A216323.
Programs
-
Maple
read "radabc.txt": [seq(radabc(1,A216324(n)),n=1..42)]/2; (with the above given link with the maple text file)
-
Mathematica
rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; a = 1; Table[t = {}; mx = 10^n; Do[c = a + b; If[c < mx && GCD[a, b] == 1 && Log[c] > Log[rad[a*b*c]], AppendTo[t, rad[b*c]/2]], {b, a, mx - a}], {n, 5}]; t (* T. D. Noe, Sep 24 2012 *)
Formula
a(n) = r(1,b(n),b(n)+1) with b(n) = A216323(n), n>=1, and r(a,b,c) is the radical, also known as squarefree kernel, of a*b*c.
Comments