cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216323 Values for b in abc-triples with a=1.

Original entry on oeis.org

8, 48, 63, 80, 224, 242, 288, 512, 624, 675, 728, 960, 1024, 1215, 2303, 2400, 3024, 3887, 3968, 4095, 4374, 5831, 6399, 6560, 6655, 6859, 8575, 9375, 9408, 9800, 10647, 12167, 14336, 15624, 16128, 17576, 21951, 24299, 25920, 28125, 29375, 29791
Offset: 1

Views

Author

Wolfdieter Lang, Sep 24 2012

Keywords

Comments

For abc-triples see de Smit's link.
(a, b, c=a+b) with positive integers a and b, a <= b, gcd(a,b) = 1 is called an abc-triple if r(a,b,c) < c where r(a,b,c) = rad(a*b*c) with rad = A007947 (radical or squarefree kernel). The quality q of an abc-triple is the real positive number q(a,b,c) = log(c)/log(r(a,b,c)), hence q > 1. See also a comment on A216370.
Here one considers a = 1, c = 1+b for b >= 1.
The radical r(1,a(n),a(n)+1) for these abc-triples is 2*A216324.
The highest quality q of the 258 abc-triples (1, a(n), a(n)+1) with b in the range 1..10^7 appears for the triple (1, 4374, 4375) with b = a(21) and q = 1.567887264 (maple 10 digits).
This sequence is infinite because it contains the infinite subsequence b(k) = 9^k - 1, k>=1.
Alvarez-Salazar et al. prove that k is a term iff k/rad(k) > rad(k+1). - Michel Marcus, Jan 05 2023

Crossrefs

Programs

  • Maple
    read "abc1bN.txt":  abc1bN(30000); (with the above given maple text file).
  • Mathematica
    rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; a = 1; Table[t = {}; mx = 10^n; Do[c = a + b; If[c < mx && GCD[a, b] == 1 && Log[c] > Log[rad[a*b*c]], AppendTo[t, b]], {b, a, mx - a}], {n, 5}]; t (* T. D. Noe, Sep 24 2012 *)
    Rad[n_] := Module[{lst = FactorInteger[n]}, Times @@ (First /@ lst)]; lst={};
    n = 1; While[Length@lst <= 10^2, If[n/Rad[n]>Rad[n+1], AppendTo[lst, n]]; n++]; lst (* Frank M Jackson, Sep 04 2024 *)

Formula

(1, b=a(n), a(n)+1) is an abc-triple (which has quality q > 1) with increasingly ordered b values. See the comment above for abc-triples.

A216328 Values for b in abc-triples with a = 2.

Original entry on oeis.org

243, 70225, 265879, 953125, 1015623, 1071873, 1922373, 6436341, 6739605, 7263025
Offset: 1

Views

Author

Wolfdieter Lang, Sep 28 2012

Keywords

Comments

The listed 10 b-values are the ones for all (2,b,2+b) triples
with b from the range {1, 2, ..., 10^7}. The best quality among these values appears for n=8: (2, 6436341, 6436343), b = 3^10*109, with rad(2*b*(2+b)) = 15042 =2*3*23*109 and q(2,6436341,6436343) = 1.629911684 (maple 10 digits). See Tabl. I of the (not updated) link: The ABC Conjecture Home Page.
See A216323 for the list of increasing b values for abc-triples if a=1. There one finds also a reference and a maple program which can be adapted to a=2 instead of a=1.
This sequence is infinite because it contains the infinite subsequence b(k) = 243^(84k+1), k >= 0. - William Hu, Aug 29 2024

Examples

			n:  (a=2, b, c=2+a),    rad(a*b*c), q(a*b*c) (maple 10 digits)
1:  (2, 243, 245),         210,     1.028828797
2:  (2, 70225, 70227),     27030,   1.093563284
3:  (2, 255879, 255881),   252642,  1.001024059
4:  (2, 953125, 953127),   525210,  1.045245231
5:  (2, 1015623, 1015625), 128310,  1.175886268
6:  (2, 1071873, 1071875), 926310,  1.010623492
7:  (2, 1922373, 1922375), 799890,  1.064510569
8:  (2, 6436341, 6436343), 15042,   1.629911684
9:  (2, 6739605, 6739607), 3621030, 1.041135746
10: (2, 7263025, 7263027), 94710,   1.378732296
...
From _Wolfdieter Lang_, Oct 02 2012: (Start)
The prime number decomposition of the ten b-values is
3^5, 5^2*53^2, 3^9*13, 5^6*61, 3^2*7^4*47, 3^5*11*401, 3^8*293, 3^10*109, 3^6*5*43^2, 5^2*7^4*11^2.
The ten c = b+2 numbers have the prime number decomposition
5*7^2, 3^5*17^2, 41*79^2, 3^4*7*41^2, 5^7*13, 5^5*7^3, 5^3*7*13^3, 23^5, 7^5*401, 3^11*41. (End)
		

Crossrefs

Programs

  • Maple
    See the program given in A216323, adapted to a=2.

Formula

(2, b=a(n), 2+a(n)) is an abc-triple (which has quality q > 1) with increasingly ordered b values. See the comment above for abc-triples.
Showing 1-2 of 2 results.