A216650 Maximum length of each subsequence whose elements are the greatest prime divisors of the integers 2, 3, 4, ... in increasing order.
2, 2, 2, 4, 2, 1, 1, 2, 2, 4, 3, 3, 2, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 4, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 3, 1, 3, 3, 1, 2, 5, 1, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 2, 1, 3, 1, 1, 3, 2, 2, 3, 3, 2, 3, 1, 3, 3, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 6, 1, 5, 2, 2, 2
Offset: 1
Keywords
Examples
Subset 1: {2, 3} obtained with the numbers 2, 3 => a(1) = 2; Subset 2: {2, 5} obtained with the numbers 4, 5 => a(2) = 2; Subset 3: {3, 7} obtained with the numbers 6, 7 => a(3) = 2; Subset 4: {2, 3, 5, 11} obtained with the numbers 8, 9, 10, 11 => a(4) = 4.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):p0:=2:it:=1:for n from 3 to 200 do: x:=factorset(n):n1:=nops(x):p:=x[n1]:if p>p0 then it:=it+1:p0:=p:else printf(`%d, `,it):it:=1:p0:=p:fi:od:
Comments