A216689 Expansion of e.g.f. exp( x * exp(x)^2 ).
1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Vaclav Kotesovec, Asymptotic solution of the equations using the Lambert W-function
Crossrefs
Programs
-
Mathematica
With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
-
PARI
x='x+O('x^66); Vec(serlaplace(exp( x * exp(x)^2 ))) /* Joerg Arndt, Sep 14 2012 */
-
PARI
/* From o.g.f.: */ {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)} for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
-
PARI
/* From binomial sum: */ {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))} for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
Formula
O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)