cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216689 Expansion of e.g.f. exp( x * exp(x)^2 ).

Original entry on oeis.org

1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).
Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x * exp(x)^2 )))
    /* Joerg Arndt, Sep 14 2012 */
    
  • PARI
    /* From o.g.f.: */
    {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
    
  • PARI
    /* From binomial sum: */
    {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
    for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)