A216688
Expansion of e.g.f. exp( x * exp(x^2) ).
Original entry on oeis.org
1, 1, 1, 7, 25, 121, 841, 4831, 40657, 325585, 2913841, 29910871, 301088041, 3532945417, 41595396025, 531109561711, 7197739614241, 100211165640481, 1507837436365537, 23123578483200295, 376697477235716281, 6348741961892933401, 111057167658053740201, 2032230051717594032767
Offset: 0
Cf.
A216507 (e.g.f. exp(x^2*exp(x))),
A216689 (e.g.f. exp(x*exp(x)^2)).
-
With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x^2]], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
-
x='x+O('x^66);
Vec(serlaplace(exp( x * exp(x^2) )))
/* Joerg Arndt, Sep 14 2012 */
-
a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(k!*(n-2*k)!)); \\ Seiichi Manyama, Aug 18 2022
A216507
E.g.f. exp( x^2 * exp(x) ).
Original entry on oeis.org
1, 0, 2, 6, 24, 140, 870, 5922, 45416, 381096, 3442410, 33382910, 345803172, 3801763836, 44156760830, 539962736250, 6929042527920, 93032248209872, 1303556965679826, 19018807375195638, 288341417011487420, 4534168069704168420, 73829219253218066022, 1242905562198878544626
Offset: 0
Cf.
A216688 (e.g.f. exp(x*exp(x^2))),
A216689 (e.g.f. exp(x*exp(x)^2)).
-
With[{nn = 25}, CoefficientList[Series[Exp[x^2 Exp[x]], {x, 0, nn}],
x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
-
x='x+O('x^66);
Vec(serlaplace(exp( x^2 * exp(x) )))
/* Joerg Arndt, Sep 14 2012 */
A240165
E.g.f.: exp( x*(1 + exp(2*x)) ).
Original entry on oeis.org
1, 2, 8, 44, 288, 2192, 18976, 182912, 1934848, 22231808, 275203584, 3645178880, 51370694656, 766634946560, 12066538676224, 199607631945728, 3459736006950912, 62662715180515328, 1183139425871331328, 23237689444403511296, 473852525131782946816, 10014501808427774246912
Offset: 0
E.g.f.: E(x) = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 288*x^4/4! + 2192*x^5/5! +...
where E(x) = exp(x) * exp(x*exp(2*x)).
O.g.f.: A(x) = 1 + 2*x + 8*x^2 + 44*x^3 + 288*x^4 + 2192*x^5 +...
where
A(x) = 1/(1-x) + x/(1-3*x)^2 + x^2/(1-5*x)^3 + x^3/(1-7*x)^4 + x^4/(1-9*x)^5 +...
-
Table[Sum[Binomial[n,k] *(2*k+1)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
With[{nn=30},CoefficientList[Series[Exp[x(1+Exp[2x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 17 2016 *)
-
{a(n)=local(A=1);A=exp( x*(1 + exp(2*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (2*k+1)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n, binomial(n,k) * (2*k+1)^(n-k) )}
for(n=0,30,print1(a(n),", "))
A240989
Expansion of e.g.f. exp(x^2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 390, 2562, 11816, 105912, 1063530, 8815070, 81342492, 895185876, 9971185406, 112642410090, 1372455608400, 17750397057392, 236950003516626, 3286258330135734, 47688868443593540, 719345273005797900, 11222288509573985382, 181168865439054099266
Offset: 0
-
CoefficientList[Series[E^(x^2*(E^x-1)), {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^30); Vec(serlaplace(exp(x^2*(exp(x) - 1)))) \\ G. C. Greubel, Nov 21 2017
-
a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022
A245834
E.g.f.: exp( x*(1 + exp(3*x)) ).
Original entry on oeis.org
1, 2, 10, 71, 592, 5777, 64792, 814025, 11264176, 169871633, 2768582104, 48412950929, 902831609368, 17865749820089, 373564063839376, 8223263706957713, 189960800250512608, 4591950749700004385, 115866075506169417256, 3044877330738661504625, 83169542349597382767496, 2356949307613191494567561
Offset: 0
E.g.f.: E(x) = 1 + 2*x + 10*x^2/2! + 71*x^3/3! + 592*x^4/4! + 5777*x^5/5! +...
where E(x) = exp(x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 71*x^3 + 592*x^4 + 5777*x^5 + 64792*x^6 +...
where
A(x) = 1/(1-x) + x/(1-4*x)^2 + x^2/(1-7*x)^3 + x^3/(1-10*x)^4 + x^4/(1-13*x)^5 +...
-
Table[Sum[Binomial[n,k] *(3*k+1)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
With[{nn=30},CoefficientList[Series[Exp[x(1+Exp[3x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 09 2019 *)
-
{a(n)=local(A=1);A=exp( x*(1 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+1)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n,(3*k+1)^(n-k)*binomial(n,k))}
for(n=0,30,print1(a(n),", "))
A116071
Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0
E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
+ (10 + 9*y + 3*y^2 + y^3)*x^3/3!
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
+ (10 + 9*y + 3*y^2 + y^3)*x^3
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
1;
1, 1;
3, 2, 1;
10, 9, 3, 1;
41, 40, 18, 4, 1;
196, 205, 100, 30, 5, 1;
1057, 1176, 615, 200, 45, 6, 1;
6322, 7399, 4116, 1435, 350, 63, 7, 1;
41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
/* By definition C^C: */
{T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From e.g.f.: */
{T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From row polynomials (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */
{T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A245835
E.g.f.: exp( x*(2 + exp(3*x)) ).
Original entry on oeis.org
1, 3, 15, 108, 945, 9558, 109917, 1412316, 19959777, 306805482, 5087064789, 90370321704, 1710170426097, 34308056537550, 726612812416269, 16188742781216892, 378244417385086785, 9242436410233527762, 235609985190361119525, 6252379688953421699760, 172380307421633200750161
Offset: 0
E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 108*x^3/3! + 945*x^4/4! + 9558*x^5/5! +...
where E(x) = exp(2*x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 108*x^3 + 945*x^4 + 9558*x^5 + 109917*x^6 +...
where
A(x) = 1/(1-2*x) + x/(1-5*x)^2 + x^2/(1-8*x)^3 + x^3/(1-11*x)^4 + x^4/(1-14*x)^5 +...
-
Table[Sum[Binomial[n,k] * (3*k+2)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2014 *)
With[{nn=20},CoefficientList[Series[Exp[x(2+Exp[3x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 06 2015 *)
-
{a(n)=local(A=1);A=exp( x*(2 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+2)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n,(3*k+2)^(n-k)*binomial(n,k))}
for(n=0,30,print1(a(n),", "))
A295552
a(n) = n! * [x^n] exp(x*exp(n*x)).
Original entry on oeis.org
1, 1, 5, 46, 689, 15476, 483157, 19719022, 1009495489, 63119450152, 4728073048901, 417482964953594, 42834647403146161, 5043607239173464924, 674409403861210214485, 101517071981284179924526, 17074451852556909059698433, 3187883879639402167714593488, 656838643288782957496595002117
Offset: 0
-
Table[n! SeriesCoefficient[Exp[x Exp[n x]], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[Sum[Binomial[n, k] (n k)^(n - k), {k, 0, n}], {n, 1, 18}]]
A356819
Expansion of e.g.f. exp(-x * exp(2*x)).
Original entry on oeis.org
1, -1, -3, -1, 41, 239, 229, -8401, -87151, -324577, 3238541, 70271519, 601086265, 142860431, -81504662539, -1393683935281, -10777424809951, 63537986981183, 3552608426329117, 60283510555017023, 441644419610814281, -6191820436867600081
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*exp(2*x))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-2*k*x)^(k+1)))
-
a(n) = sum(k=0, n, (-1)^k*(2*k)^(n-k)*binomial(n, k));
A356827
Expansion of e.g.f. exp(x * exp(3*x)).
Original entry on oeis.org
1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
Offset: 0
-
A356827 := proc(n)
add((3*k)^(n-k) * binomial(n,k),k=0..n) ;
end proc:
seq(A356827(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
-
a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));
Showing 1-10 of 10 results.
Comments