A053530
Expansion of e.g.f.: exp(-x - x^2/2 + x*exp(x)).
Original entry on oeis.org
1, 0, 1, 3, 7, 35, 171, 847, 5041, 32643, 223705, 1659581, 13182159, 110802133, 984241363, 9212696235, 90477239521, 929604133343, 9969157068273, 111329454692485, 1291932988047775, 15550838026589061, 193833398512358011, 2498039016973836491
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(b).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(-x -x^2/2 +x*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
nn = 30; a = x Exp[x]; Range[0, nn]! CoefficientList[Series[Exp[a - x^2/2! - x], {x, 0, nn}], x] (* Geoffrey Critzer, Dec 10 2011 *)
CoefficientList[Series[Exp[-x - x^2/2 + x Exp[x]], {x, 0, 30}], x] Range[0, 30]! (* Eric W. Weisstein, Aug 10 2017 *)
Table[n! Sum[1/k! (Binomial[k, n-k] 2^(k-n) (-1)^k + Sum[Binomial[k, j] Sum[j^(i-j)/(i-j)! Binomial[k-j, n-i-k+j] 2^(i-j+k-n) (-1)^(k-j), {i, j, n-k+j}], {j, k}]), {k, n}], {n, 30}] (* Eric W. Weisstein, Aug 10 2017 *)
-
a(n):=n!*sum((binomial(k,n-k)*2^(k-n)*(-1)^k +sum(binomial(k,j) *sum(j^(i-j)/(i-j)!*binomial(k-j,n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j),i,j,n-k+j),j,1,k))/k!,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
-
x='x+O('x^30); Vec(serlaplace(exp(-x-1/2*x^2+x*exp(x)))) \\ Altug Alkan, Aug 10 2017
-
m = 30; T = taylor(exp(-x -x^2/2 +x*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A052506
Expansion of e.g.f. exp(x*exp(x)-x).
Original entry on oeis.org
1, 0, 2, 3, 16, 65, 336, 1897, 11824, 80145, 586000, 4588001, 38239224, 337611001, 3144297352, 30779387745, 315689119456, 3383159052833, 37790736663456, 439036039824193, 5294386116882280, 66155074120062921, 855156188538926296, 11418964004032623809
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x*Exp(x)-x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
-
spec := [S,{S=Set(Tree), Tree=Prod(Z,Set(Z,0 < card))},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
nn=20;Range[0,nn]! CoefficientList[Series[Exp[x(Exp[x]-1)], {x,0,nn}], x] (* Geoffrey Critzer, Sep 20 2012 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x*exp(x)-x) )) \\ G. C. Greubel, Nov 15 2017
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
-
m = 30; T = taylor(exp(x*exp(x)-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
A003727
Expansion of e.g.f. exp(x * cosh(x)).
Original entry on oeis.org
1, 1, 1, 4, 13, 36, 181, 848, 3865, 23824, 140521, 871872, 6324517, 44942912, 344747677, 2860930816, 23853473329, 213856723200, 1996865965009, 19099352929280, 193406280000061, 2010469524579328, 21615227339380357, 242177953175506944
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*Cosh(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 09 2018
-
CoefficientList[Series[E^(x*Cosh[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 05 2014 *)
Table[Sum[BellY[n, k, Mod[Range[n], 2] Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
a(n):=sum(if n=k then n! else 1/2^k*sum(binomial(n,k)*binomial(k,i)*(k-2*i)^(n-k),i,0,k),k,1,n); /* Vladimir Kruchinin, Aug 22 2010 */
-
x='x+O('x^66);
Vec(serlaplace(exp( x * cosh(x) )))
/* Joerg Arndt, Sep 14 2012 */
A216507
E.g.f. exp( x^2 * exp(x) ).
Original entry on oeis.org
1, 0, 2, 6, 24, 140, 870, 5922, 45416, 381096, 3442410, 33382910, 345803172, 3801763836, 44156760830, 539962736250, 6929042527920, 93032248209872, 1303556965679826, 19018807375195638, 288341417011487420, 4534168069704168420, 73829219253218066022, 1242905562198878544626
Offset: 0
Cf.
A216688 (e.g.f. exp(x*exp(x^2))),
A216689 (e.g.f. exp(x*exp(x)^2)).
-
With[{nn = 25}, CoefficientList[Series[Exp[x^2 Exp[x]], {x, 0, nn}],
x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
-
x='x+O('x^66);
Vec(serlaplace(exp( x^2 * exp(x) )))
/* Joerg Arndt, Sep 14 2012 */
A065143
a(n) = Sum_{k=0..n} Stirling2(n,k)*(1+(-1)^k)*2^k/2.
Original entry on oeis.org
1, 0, 4, 12, 44, 220, 1228, 7196, 45004, 303900, 2201676, 16920860, 136966860, 1163989788, 10364408140, 96463232284, 935872773068, 9440653262620, 98809201693260, 1071131795708188, 12007932126074060
Offset: 0
-
Table[Sum[StirlingS2[n,k]*(1+(-1)^k)*2^k/2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
Table[(BellB[n, 2] + BellB[n, -2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
-
a(n) = sum(k=0, n, stirling(n,k,2)*(1+(-1)^k)*2^k/2); \\ Michel Marcus, Nov 02 2015
-
x='x+O('x^50); Vec(serlaplace(cosh(2*exp(x)-2))) \\ G. C. Greubel, Nov 16 2017
A216689
Expansion of e.g.f. exp( x * exp(x)^2 ).
Original entry on oeis.org
1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0
Cf.
A216507 (e.g.f. exp(x^2*exp(x))),
A216688 (e.g.f. exp(x*exp(x^2))).
Cf.
A240165 (e.g.f. exp(x*(1+exp(x)^2))).
-
With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
-
x='x+O('x^66);
Vec(serlaplace(exp( x * exp(x)^2 )))
/* Joerg Arndt, Sep 14 2012 */
-
/* From o.g.f.: */
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
-
/* From binomial sum: */
{a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
A358064
Expansion of e.g.f. 1/(1 - x * exp(x^2)).
Original entry on oeis.org
1, 1, 2, 12, 72, 540, 5040, 53760, 658560, 9087120, 139104000, 2343781440, 43078210560, 857676980160, 18390744852480, 422504399116800, 10353592759910400, 269576216304595200, 7431814422621388800, 216266552026593868800, 6624610236968435712000
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1-x Exp[x^2]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 14 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(x^2))))
-
a(n) = n!*sum(k=0, n\2, (n-2*k)^k/k!);
A060311
Expansion of e.g.f. exp((exp(x)-1)^2/2).
Original entry on oeis.org
1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2019
-
a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
-
a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */
-
{ for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009
-
a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(2^k*k!)); \\ Seiichi Manyama, May 07 2022
A240165
E.g.f.: exp( x*(1 + exp(2*x)) ).
Original entry on oeis.org
1, 2, 8, 44, 288, 2192, 18976, 182912, 1934848, 22231808, 275203584, 3645178880, 51370694656, 766634946560, 12066538676224, 199607631945728, 3459736006950912, 62662715180515328, 1183139425871331328, 23237689444403511296, 473852525131782946816, 10014501808427774246912
Offset: 0
E.g.f.: E(x) = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 288*x^4/4! + 2192*x^5/5! +...
where E(x) = exp(x) * exp(x*exp(2*x)).
O.g.f.: A(x) = 1 + 2*x + 8*x^2 + 44*x^3 + 288*x^4 + 2192*x^5 +...
where
A(x) = 1/(1-x) + x/(1-3*x)^2 + x^2/(1-5*x)^3 + x^3/(1-7*x)^4 + x^4/(1-9*x)^5 +...
-
Table[Sum[Binomial[n,k] *(2*k+1)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
With[{nn=30},CoefficientList[Series[Exp[x(1+Exp[2x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 17 2016 *)
-
{a(n)=local(A=1);A=exp( x*(1 + exp(2*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (2*k+1)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n, binomial(n,k) * (2*k+1)^(n-k) )}
for(n=0,30,print1(a(n),", "))
A240989
Expansion of e.g.f. exp(x^2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 390, 2562, 11816, 105912, 1063530, 8815070, 81342492, 895185876, 9971185406, 112642410090, 1372455608400, 17750397057392, 236950003516626, 3286258330135734, 47688868443593540, 719345273005797900, 11222288509573985382, 181168865439054099266
Offset: 0
-
CoefficientList[Series[E^(x^2*(E^x-1)), {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^30); Vec(serlaplace(exp(x^2*(exp(x) - 1)))) \\ G. C. Greubel, Nov 21 2017
-
a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022
Showing 1-10 of 22 results.
Comments