cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A053530 Expansion of e.g.f.: exp(-x - x^2/2 + x*exp(x)).

Original entry on oeis.org

1, 0, 1, 3, 7, 35, 171, 847, 5041, 32643, 223705, 1659581, 13182159, 110802133, 984241363, 9212696235, 90477239521, 929604133343, 9969157068273, 111329454692485, 1291932988047775, 15550838026589061, 193833398512358011, 2498039016973836491
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

Comments

The number of simple labeled graphs on n nodes whose connected components are stars. - Geoffrey Critzer, Dec 10 2011
Equivalently, the number of minimal edge covers of the complete graph K_n. - Andrew Howroyd, Aug 04 2017

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(b).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(-x -x^2/2 +x*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    nn = 30; a = x Exp[x]; Range[0, nn]! CoefficientList[Series[Exp[a - x^2/2! - x], {x, 0, nn}], x] (* Geoffrey Critzer, Dec 10 2011 *)
    CoefficientList[Series[Exp[-x - x^2/2 + x Exp[x]], {x, 0, 30}], x] Range[0, 30]! (* Eric W. Weisstein, Aug 10 2017 *)
    Table[n! Sum[1/k! (Binomial[k, n-k] 2^(k-n) (-1)^k + Sum[Binomial[k, j] Sum[j^(i-j)/(i-j)! Binomial[k-j, n-i-k+j] 2^(i-j+k-n) (-1)^(k-j), {i, j, n-k+j}], {j, k}]), {k, n}], {n, 30}] (* Eric W. Weisstein, Aug 10 2017 *)
  • Maxima
    a(n):=n!*sum((binomial(k,n-k)*2^(k-n)*(-1)^k +sum(binomial(k,j) *sum(j^(i-j)/(i-j)!*binomial(k-j,n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j),i,j,n-k+j),j,1,k))/k!,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x-1/2*x^2+x*exp(x)))) \\ Altug Alkan, Aug 10 2017
    
  • Sage
    m = 30; T = taylor(exp(-x -x^2/2 +x*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

a(n) = n!*Sum_{k=1..n} (1/k!)*( binomial(k, n-k)*2^(k-n)*(-1)^k + Sum_{j=1..k} binomial(k,j)* (Sum_{i=j..n-k+j} (j^(i-j)/(i-j)! * binomial(k-j,n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j)) ) ), n>0. - Vladimir Kruchinin, Sep 10 2010
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(r^2/2 + n*r/(1+r)) * r^n * sqrt(r^2*(1+r)/n + 2+r-1/(1+r))), where r is the root of the equation r*(exp(r)*(1+r)-1-r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n)/2)))/(2*LambertW(sqrt(n)/2)).
(End)

A052506 Expansion of e.g.f. exp(x*exp(x)-x).

Original entry on oeis.org

1, 0, 2, 3, 16, 65, 336, 1897, 11824, 80145, 586000, 4588001, 38239224, 337611001, 3144297352, 30779387745, 315689119456, 3383159052833, 37790736663456, 439036039824193, 5294386116882280, 66155074120062921, 855156188538926296, 11418964004032623809
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of forests of rooted labeled trees with height exactly one. Equivalently, the number of idempotent mappings from {1,2,...,n} into {1,2,...,n} where each fixed point has at least one (other than itself) element mapped to it. See the second summation formula provided by Vladeta Jovovic with conditions on k, the number of fixed points. - Geoffrey Critzer, Sep 20 2012

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x*Exp(x)-x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{S=Set(Tree), Tree=Prod(Z,Set(Z,0 < card))},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    nn=20;Range[0,nn]! CoefficientList[Series[Exp[x(Exp[x]-1)], {x,0,nn}], x]  (* Geoffrey Critzer, Sep 20 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x*exp(x)-x) )) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
    
  • Sage
    m = 30; T = taylor(exp(x*exp(x)-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*(n-k-1)^k. - Vladeta Jovovic, Apr 12 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*k!*Stirling2(n-k, k). - Vladeta Jovovic, Dec 19 2004
a(n) ~ exp((1-r*(n+r))/(1+r)) * n^(n+1/2) * sqrt(1+r) / (r^n * sqrt((1+r)^3 + n*(1+3*r+r^2))), where r satisfies exp(r)*(1+r) - (1+n)/r = 1. - Vaclav Kotesovec, Aug 04 2014
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n)/2))) / (2*LambertW(sqrt(n)/2)). - Vaclav Kotesovec, Aug 06 2014
G.f.: Sum_{k>=0} x^k / (1 - (k-1)*x)^(k+1). - Seiichi Manyama, Aug 29 2022

A003727 Expansion of e.g.f. exp(x * cosh(x)).

Original entry on oeis.org

1, 1, 1, 4, 13, 36, 181, 848, 3865, 23824, 140521, 871872, 6324517, 44942912, 344747677, 2860930816, 23853473329, 213856723200, 1996865965009, 19099352929280, 193406280000061, 2010469524579328, 21615227339380357, 242177953175506944
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*Cosh(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 09 2018
  • Mathematica
    CoefficientList[Series[E^(x*Cosh[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 05 2014 *)
    Table[Sum[BellY[n, k, Mod[Range[n], 2] Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • Maxima
    a(n):=sum(if n=k then n! else 1/2^k*sum(binomial(n,k)*binomial(k,i)*(k-2*i)^(n-k),i,0,k),k,1,n); /* Vladimir Kruchinin, Aug 22 2010 */
    
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x * cosh(x) )))
    /* Joerg Arndt, Sep 14 2012 */
    

Formula

a(n) = Sum_{k=1..n} (if n=k then n! otherwise (1/2)^k*Sum_{i=0..k} binomial(n,k)* binomial(k,i)*(k-2*i)^(n-k)), n>0. - Vladimir Kruchinin, Aug 22 2010
a(n) ~ exp(r*cosh(r)-n) * n^n / (r^n * sqrt(3+(r*(r^2-2)*cosh(r))/n)), where r is the root of the equation r*(cosh(r)+r*sinh(r)) = n. - Vaclav Kotesovec, Aug 05 2014
a(n)^(1/n) ~ n*exp(1/(2*LambertW(sqrt(n/2)))-1) / (2*LambertW(sqrt(n/2))). - Vaclav Kotesovec, Aug 05 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022

Extensions

Extended and formatted by Olivier Gérard, Mar 15 1997

A216507 E.g.f. exp( x^2 * exp(x) ).

Original entry on oeis.org

1, 0, 2, 6, 24, 140, 870, 5922, 45416, 381096, 3442410, 33382910, 345803172, 3801763836, 44156760830, 539962736250, 6929042527920, 93032248209872, 1303556965679826, 19018807375195638, 288341417011487420, 4534168069704168420, 73829219253218066022, 1242905562198878544626
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Column k=2 of A292978.
Cf. A216688 (e.g.f. exp(x*exp(x^2))), A216689 (e.g.f. exp(x*exp(x)^2)).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x^2 Exp[x]], {x, 0, nn}],
       x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x^2 * exp(x) )))
    /* Joerg Arndt, Sep 14 2012 */

Formula

From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(n*(1+r)/(2+r)) * r^n * sqrt((1+r)*(4+r)/(2+r))), where r is the root of the equation r^2*(2+r)*exp(r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(n^(1/3)/3))) / (3*LambertW(n^(1/3)/3)).
(End)
a(n) = Sum_{k = 0..n/2} C(n,2*k) * ((2*k)!/k!) * k^(n-2*k). - David Einstein, Oct 30 2016

A065143 a(n) = Sum_{k=0..n} Stirling2(n,k)*(1+(-1)^k)*2^k/2.

Original entry on oeis.org

1, 0, 4, 12, 44, 220, 1228, 7196, 45004, 303900, 2201676, 16920860, 136966860, 1163989788, 10364408140, 96463232284, 935872773068, 9440653262620, 98809201693260, 1071131795708188, 12007932126074060
Offset: 0

Views

Author

Karol A. Penson, Oct 17 2001

Keywords

Comments

Stirling transform of A199572 (aerated powers of 4).

Crossrefs

Column k=4 of A357681.

Programs

  • Mathematica
    Table[Sum[StirlingS2[n,k]*(1+(-1)^k)*2^k/2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
    Table[(BellB[n, 2] + BellB[n, -2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*(1+(-1)^k)*2^k/2); \\ Michel Marcus, Nov 02 2015
    
  • PARI
    x='x+O('x^50); Vec(serlaplace(cosh(2*exp(x)-2))) \\ G. C. Greubel, Nov 16 2017

Formula

Representation as a sum of an infinite series: a(n) = exp(2)*Sum_{k = 0..infinity} ((2*k)^n*2^(2*k)/(2*k)!) - sinh(2)*sum_{k = 0..infinity}(k^n*2^k/k!), for n >= 0.
E.g.f.: cosh(2*exp(x)-2). - Vladeta Jovovic, Sep 14 2003
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n * cosh(2*exp(r)-2) / (r^n * (exp(n) * sqrt(4*exp(2*r)*r^2/n + 1-n+r))), where r is the root of the equation -2*exp(r)*r*tanh(2-2*exp(r)) = n.
(a(n)/n!)^(1/n) ~ exp(1/LambertW(n/2)) / LambertW(n/2).
(End)
a(n) = (Bell_n(2) + Bell_n(-2))/2, where Bell_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Nov 01 2015
a(n) = 1; a(n) = 4 * Sum_{k=0..n-1} binomial(n-1, k) * A357598(k). - Seiichi Manyama, Oct 12 2022

A216689 Expansion of e.g.f. exp( x * exp(x)^2 ).

Original entry on oeis.org

1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).
Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x * exp(x)^2 )))
    /* Joerg Arndt, Sep 14 2012 */
    
  • PARI
    /* From o.g.f.: */
    {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
    
  • PARI
    /* From binomial sum: */
    {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
    for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)

A358064 Expansion of e.g.f. 1/(1 - x * exp(x^2)).

Original entry on oeis.org

1, 1, 2, 12, 72, 540, 5040, 53760, 658560, 9087120, 139104000, 2343781440, 43078210560, 857676980160, 18390744852480, 422504399116800, 10353592759910400, 269576216304595200, 7431814422621388800, 216266552026593868800, 6624610236968435712000
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1-x Exp[x^2]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 14 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(x^2))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/k!.
a(n) ~ n! * 2^(n/2) / ((1 + LambertW(2)) * LambertW(2)^(n/2)). - Vaclav Kotesovec, Nov 01 2022

A060311 Expansion of e.g.f. exp((exp(x)-1)^2/2).

Original entry on oeis.org

1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353
Offset: 0

Views

Author

Vladeta Jovovic, Mar 27 2001

Keywords

Comments

After the first term, this is the Stirling transform of the sequence of moments of the standard normal (or "Gaussian") probability distribution. It is not itself a moment sequence of any probability distribution. - Michael Hardy (hardy(AT)math.umn.edu), May 29 2005
a(n) is the number of simple labeled graphs on n nodes in which each component is a complete bipartite graph. - Geoffrey Critzer, Dec 03 2011

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.

Crossrefs

Column k=2 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */
    
  • PARI
    { for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(2^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. A(x) = B(exp(x)-1) where B(x)=exp(x^2/2) is e.g.f. of A001147(2n), hence a(n) is the Stirling transform of A001147(2n). - Michael Somos, Jun 01 2005
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(1/2*(exp(r)-1)^2 - n) * n^(n+1/2) / (r^n * sqrt(exp(r)*r*(-1-r+exp(r)*(1+2*r)))), where r is the root of the equation exp(r)*(exp(r) - 1)*r = n.
(a(n)/n!)^(1/n) ~ 2*exp(1/LambertW(2*n)) / LambertW(2*n).
(End)
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/(2^k * k!). - Seiichi Manyama, May 07 2022

A240165 E.g.f.: exp( x*(1 + exp(2*x)) ).

Original entry on oeis.org

1, 2, 8, 44, 288, 2192, 18976, 182912, 1934848, 22231808, 275203584, 3645178880, 51370694656, 766634946560, 12066538676224, 199607631945728, 3459736006950912, 62662715180515328, 1183139425871331328, 23237689444403511296, 473852525131782946816, 10014501808427774246912
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2014

Keywords

Examples

			E.g.f.: E(x) = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 288*x^4/4! + 2192*x^5/5! +...
where E(x) = exp(x) * exp(x*exp(2*x)).
O.g.f.: A(x) = 1 + 2*x + 8*x^2 + 44*x^3 + 288*x^4 + 2192*x^5 +...
where
A(x) = 1/(1-x) + x/(1-3*x)^2 + x^2/(1-5*x)^3 + x^3/(1-7*x)^4 + x^4/(1-9*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] *(2*k+1)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
    With[{nn=30},CoefficientList[Series[Exp[x(1+Exp[2x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 17 2016 *)
  • PARI
    {a(n)=local(A=1);A=exp( x*(1 + exp(2*x +x*O(x^n))) );n!*polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (2*k+1)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n, binomial(n,k) * (2*k+1)^(n-k) )}
    for(n=0,30,print1(a(n),", "))

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - (2*n+1)*x)^(n+1).
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k+1)^(n-k) for n>=0.
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp((1+exp(2*r))*r - n) * n^(n+1/2) / (r^n * sqrt(r + exp(2*r)*r*(1 + 6*r + 4*r^2))), where r is the root of the equation r*(1 + exp(2*r) + 2*r*exp(2*r)) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)

A240989 Expansion of e.g.f. exp(x^2 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 390, 2562, 11816, 105912, 1063530, 8815070, 81342492, 895185876, 9971185406, 112642410090, 1372455608400, 17750397057392, 236950003516626, 3286258330135734, 47688868443593540, 719345273005797900, 11222288509573985382, 181168865439054099266
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(x^2*(E^x-1)), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x^2*(exp(x) - 1)))) \\ G. C. Greubel, Nov 21 2017
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

a(n) ~ exp((n-r^3)/(2+r)-n) * n^(n+1/2) / (r^n * sqrt((2*r^3*(3+r) + n*(1+r)*(4+r))/(2+r))), where r is the root of the equation r^2*((2+r) * exp(r) - 2) = n.
(a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(n^(1/3)/3))) / (3*LambertW(n^(1/3)/3)).
From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(n-2*k,k)/(n-2*k)!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!. (End)
Showing 1-10 of 22 results. Next