A009189
Expansion of e.g.f.: exp(cos(x)*x).
Original entry on oeis.org
1, 1, 1, -2, -11, -24, 61, 624, 1737, -7424, -88679, -242560, 2086525, 23499776, 45950997, -1002251264, -9763133167, -2151563264, 705668046769, 5583112077312, -17356978593659, -666018502836224, -3823112141007763, 39230927775531008, 788728947108214489
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[Cos[x]*x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 15 2018 *)
-
a(n):=(sum(binomial(n,k)*(-1)^((n-k)/2)*(1+(-1)^(n-k))/(2^(k))*sum(binomial(k,i)*(k-2*i)^(n-k),i,0,floor((k-1)/2)),k,1,n-1))+1; /* Vladimir Kruchinin, Apr 21 2011 */
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x*cos(x)))) \\ Seiichi Manyama, Mar 26 2022
Definition clarified and prior Mathematica program replaced by
Harvey P. Dale, Mar 15 2018
A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A351937
Expansion of e.g.f. exp( (sinh(x) + x*cosh(x)) / 2 ).
Original entry on oeis.org
1, 1, 1, 3, 9, 24, 99, 418, 1769, 9320, 49541, 278912, 1764825, 11319784, 77850287, 570610472, 4290387409, 34316005632, 285335249065, 2455224885440, 22165590003849, 206191758121856, 1989511661589435, 19903718061574144, 204795484665487865, 2179948112062667392
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[(Sinh[x] + x Cosh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] (k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp((sinh(x) + x*cosh(x))/2))) \\ Michel Marcus, Feb 26 2022
A354518
Expansion of e.g.f. cosh(x)^exp(x).
Original entry on oeis.org
1, 0, 1, 3, 7, 30, 166, 798, 4117, 27660, 196756, 1328448, 9866407, 86205210, 759842266, 6460661028, 60841732777, 651349676280, 6795873687496, 67981177154688, 770224145659627, 9854500496860470, 116983085896035646, 1301594922821009028, 17440543467561038557
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(cosh(x)^exp(x)))
-
a354520(n) = sum(k=1, n\2, (16^k-4^k)*bernfrac(2*k)/(2*k)*binomial(n, 2*k));
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354520(j)*binomial(i-1, j-1)*v[i-j+1])); v;
A381273
Expansion of e.g.f. exp(x * cosh(2*x)).
Original entry on oeis.org
1, 1, 1, 13, 49, 201, 2161, 12629, 102817, 1118161, 9109921, 105660765, 1223720785, 13461561881, 186666204817, 2406325357861, 33607592404033, 516511765519521, 7658010172957249, 126206019752173997, 2115466479287184241, 36218229615683409001, 666810643855970901937
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, 2^(n-k)*a185951(n, k));
A381274
Expansion of e.g.f. exp(x * cosh(3*x)).
Original entry on oeis.org
1, 1, 1, 28, 109, 676, 10261, 65584, 881497, 11930896, 122708521, 2186539840, 30542901445, 477545743936, 9168255077437, 149358238356736, 3043023842477233, 61000460650291456, 1225825910880514129, 28395625697194028032, 621110654837608378141, 14936817377079335166976
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, 3^(n-k)*a185951(n, k));
A191509
E.g.f. exp(x*sqrt(1+sin(x)^2)).
Original entry on oeis.org
1, 1, 1, 4, 13, -4, -59, 848, 1625, -57968, -82679, 5307072, 3378277, -761466432, -178851763, 155538255616, 13323839409, -43026868334336, -1145167641071, 15502018794828800, 110592144624061, -7038075176027079680, -12523284027203883, 3925127762389637074944, 1643266949074714633, -2635567108489125092225024
Offset: 0
-
CoefficientList[Series[E^(x*Sqrt[1+Sin[x]^2]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
-
a(n):=2*sum(binomial(n,n-2*j)*sum(4^(j-k)*binomial((n-2*j)/2,k)*sum((i-k)^(2*j)*binomial(2*k,i)*(-1)^(j+k-i),i,0,k-1),k,0,j),j,1,(n-1)/2)+1;
A352254
Expansion of e.g.f. exp( x * sinh(x) / 2 ) (even powers only).
Original entry on oeis.org
1, 1, 5, 48, 753, 16880, 507579, 19509042, 927229553, 53126200872, 3597373129635, 283321938437318, 25614466939850169, 2629191169850594388, 303549146372282854883, 39103024746814973908890, 5581172267077778765676129, 877211696663645448333041072, 151002471269513108372760683523
Offset: 0
-
nmax = 36; Take[CoefficientList[Series[Exp[x Sinh[x]/2], {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
my(x='x+O('x^40), v=Vec(serlaplace(exp(x*sinh(x)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022
A381140
Expansion of e.g.f. exp( -LambertW(-x * cosh(x)) ).
Original entry on oeis.org
1, 1, 3, 19, 161, 1781, 24667, 409991, 7959233, 176920489, 4432942931, 123648692795, 3800647961761, 127654261471517, 4651982506605995, 182824074836850991, 7708128977570816129, 347059689259637711441, 16621016953663100702755, 843658152872351669816675
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, (k+1)^(k-1)*a185951(n, k));
A381143
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * cosh(x)) ).
Original entry on oeis.org
1, 1, 3, 19, 185, 2381, 38227, 739271, 16752465, 435437209, 12772234211, 417396070235, 15040805940745, 592531894182437, 25336144876513395, 1168670193628654351, 57845446906144852769, 3058248577410499021361, 172007282950136451003331, 10255035157348348977955619
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, (n+1)^(k-1)*a185951(n, k));
Showing 1-10 of 15 results.
Comments