cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A009189 Expansion of e.g.f.: exp(cos(x)*x).

Original entry on oeis.org

1, 1, 1, -2, -11, -24, 61, 624, 1737, -7424, -88679, -242560, 2086525, 23499776, 45950997, -1002251264, -9763133167, -2151563264, 705668046769, 5583112077312, -17356978593659, -666018502836224, -3823112141007763, 39230927775531008, 788728947108214489
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Cos[x]*x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 15 2018 *)
  • Maxima
    a(n):=(sum(binomial(n,k)*(-1)^((n-k)/2)*(1+(-1)^(n-k))/(2^(k))*sum(binomial(k,i)*(k-2*i)^(n-k),i,0,floor((k-1)/2)),k,1,n-1))+1; /* Vladimir Kruchinin, Apr 21 2011 */
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x*cos(x)))) \\ Seiichi Manyama, Mar 26 2022

Formula

a(n) = (sum(k=1..n-1, binomial(n,k)*(-1)^((n-k)/2)*(1+(-1)^(n-k))/(2^(k))*sum(i=0..floor((k-1)/2)), binomial(k,i)*(k-2*i)^(n-k)))+1. - Vladimir Kruchinin, Apr 21 2011
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1,2*k) * (2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Mar 15 2018

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A351937 Expansion of e.g.f. exp( (sinh(x) + x*cosh(x)) / 2 ).

Original entry on oeis.org

1, 1, 1, 3, 9, 24, 99, 418, 1769, 9320, 49541, 278912, 1764825, 11319784, 77850287, 570610472, 4290387409, 34316005632, 285335249065, 2455224885440, 22165590003849, 206191758121856, 1989511661589435, 19903718061574144, 204795484665487865, 2179948112062667392
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[(Sinh[x] + x Cosh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] (k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp((sinh(x) + x*cosh(x))/2))) \\ Michel Marcus, Feb 26 2022

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (k+1) * a(n-2*k-1).

A354518 Expansion of e.g.f. cosh(x)^exp(x).

Original entry on oeis.org

1, 0, 1, 3, 7, 30, 166, 798, 4117, 27660, 196756, 1328448, 9866407, 86205210, 759842266, 6460661028, 60841732777, 651349676280, 6795873687496, 67981177154688, 770224145659627, 9854500496860470, 116983085896035646, 1301594922821009028, 17440543467561038557
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2022

Keywords

Comments

a(39) is negative. - Vaclav Kotesovec, Aug 17 2022

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(cosh(x)^exp(x)))
    
  • PARI
    a354520(n) = sum(k=1, n\2, (16^k-4^k)*bernfrac(2*k)/(2*k)*binomial(n, 2*k));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354520(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A354520(k) * binomial(n-1,k-1) * a(n-k).

A381273 Expansion of e.g.f. exp(x * cosh(2*x)).

Original entry on oeis.org

1, 1, 1, 13, 49, 201, 2161, 12629, 102817, 1118161, 9109921, 105660765, 1223720785, 13461561881, 186666204817, 2406325357861, 33607592404033, 516511765519521, 7658010172957249, 126206019752173997, 2115466479287184241, 36218229615683409001, 666810643855970901937
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, 2^(n-k)*a185951(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 4^k * (2*k+1) * binomial(n-1,2*k) * a(n-2*k-1).
a(n) = Sum_{k=0..n} 2^(n-k) * A185951(n,k).

A381274 Expansion of e.g.f. exp(x * cosh(3*x)).

Original entry on oeis.org

1, 1, 1, 28, 109, 676, 10261, 65584, 881497, 11930896, 122708521, 2186539840, 30542901445, 477545743936, 9168255077437, 149358238356736, 3043023842477233, 61000460650291456, 1225825910880514129, 28395625697194028032, 621110654837608378141, 14936817377079335166976
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, 3^(n-k)*a185951(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 9^k * (2*k+1) * binomial(n-1,2*k) * a(n-2*k-1).
a(n) = Sum_{k=0..n} 3^(n-k) * A185951(n,k).

A191509 E.g.f. exp(x*sqrt(1+sin(x)^2)).

Original entry on oeis.org

1, 1, 1, 4, 13, -4, -59, 848, 1625, -57968, -82679, 5307072, 3378277, -761466432, -178851763, 155538255616, 13323839409, -43026868334336, -1145167641071, 15502018794828800, 110592144624061, -7038075176027079680, -12523284027203883, 3925127762389637074944, 1643266949074714633, -2635567108489125092225024
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 04 2011

Keywords

Crossrefs

Cf. A003727.

Programs

  • Mathematica
    CoefficientList[Series[E^(x*Sqrt[1+Sin[x]^2]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
  • Maxima
    a(n):=2*sum(binomial(n,n-2*j)*sum(4^(j-k)*binomial((n-2*j)/2,k)*sum((i-k)^(2*j)*binomial(2*k,i)*(-1)^(j+k-i),i,0,k-1),k,0,j),j,1,(n-1)/2)+1;

Formula

a(n)=2*sum(j=1..(n-1)/2, binomial(n,n-2*j)*sum(k=0..j, 4^(j-k)*binomial((n-2*j)/2,k)*sum(i=0..k-1, (i-k)^(2*j)*binomial(2*k,i)*(-1)^(j+k-i))))+1.
If n is odd, then a(n) ~ -sin(Pi*n/2) * 2^(5/4) * log(1+sqrt(2))^(3/2-n) * n^(n-1) / exp(n). If n is even, then limit n->infinity (|a(n)| / (n! * exp(w*cosh(w)) / w^n))^(1/n) = 1, where w = 2*LambertW(sqrt(n/2)). - Vaclav Kotesovec, Aug 05 2014

A352254 Expansion of e.g.f. exp( x * sinh(x) / 2 ) (even powers only).

Original entry on oeis.org

1, 1, 5, 48, 753, 16880, 507579, 19509042, 927229553, 53126200872, 3597373129635, 283321938437318, 25614466939850169, 2629191169850594388, 303549146372282854883, 39103024746814973908890, 5581172267077778765676129, 877211696663645448333041072, 151002471269513108372760683523
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 36; Take[CoefficientList[Series[Exp[x Sinh[x]/2], {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    my(x='x+O('x^40), v=Vec(serlaplace(exp(x*sinh(x)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n-1,2*k-1) * k * a(n-k).

A381140 Expansion of e.g.f. exp( -LambertW(-x * cosh(x)) ).

Original entry on oeis.org

1, 1, 3, 19, 161, 1781, 24667, 409991, 7959233, 176920489, 4432942931, 123648692795, 3800647961761, 127654261471517, 4651982506605995, 182824074836850991, 7708128977570816129, 347059689259637711441, 16621016953663100702755, 843658152872351669816675
Offset: 0

Views

Author

Seiichi Manyama, Feb 15 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, (k+1)^(k-1)*a185951(n, k));

Formula

E.g.f. A(x) satisfies A(x) = exp( x * cosh(x) * A(x) ).
a(n) = Sum_{k=0..n} (k+1)^(k-1) * A185951(n,k).

A381143 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * cosh(x)) ).

Original entry on oeis.org

1, 1, 3, 19, 185, 2381, 38227, 739271, 16752465, 435437209, 12772234211, 417396070235, 15040805940745, 592531894182437, 25336144876513395, 1168670193628654351, 57845446906144852769, 3058248577410499021361, 172007282950136451003331, 10255035157348348977955619
Offset: 0

Views

Author

Seiichi Manyama, Feb 15 2025

Keywords

Comments

As stated in the comment of A185951, A185951(n,0) = 0^n.

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, (n+1)^(k-1)*a185951(n, k));

Formula

E.g.f. A(x) satisfies A(x) = exp( x * A(x) * cosh(x * A(x)) ).
a(n) = Sum_{k=0..n} (n+1)^(k-1) * A185951(n,k).
Showing 1-10 of 15 results. Next