cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A216688 Expansion of e.g.f. exp( x * exp(x^2) ).

Original entry on oeis.org

1, 1, 1, 7, 25, 121, 841, 4831, 40657, 325585, 2913841, 29910871, 301088041, 3532945417, 41595396025, 531109561711, 7197739614241, 100211165640481, 1507837436365537, 23123578483200295, 376697477235716281, 6348741961892933401, 111057167658053740201, 2032230051717594032767
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216689 (e.g.f. exp(x*exp(x)^2)).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x^2]], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x * exp(x^2) )))
    /* Joerg Arndt, Sep 14 2012 */
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(k!*(n-2*k)!)); \\ Seiichi Manyama, Aug 18 2022

Formula

a(n) = n!*Sum_{m=floor((n+1)/2)..n} (2*m-n)^(n-m)/((2*m-n)!*(n-m)!). - Vladimir Kruchinin, Mar 09 2013
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (r^n * exp((2*r^2*n)/(1+2*r^2)) * sqrt(3+2*r^2 - 2/(1 + 2*r^2))), where r is the root of the equation r*exp(r^2)*(1+2*r^2) = n.
(a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(2^(1/3)*n^(2/3)/3))) * sqrt(2/(3*LambertW(2^(1/3)*n^(2/3)/3))).
(End)

A216689 Expansion of e.g.f. exp( x * exp(x)^2 ).

Original entry on oeis.org

1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).
Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x * exp(x)^2 )))
    /* Joerg Arndt, Sep 14 2012 */
    
  • PARI
    /* From o.g.f.: */
    {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
    
  • PARI
    /* From binomial sum: */
    {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
    for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)

A240989 Expansion of e.g.f. exp(x^2 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 390, 2562, 11816, 105912, 1063530, 8815070, 81342492, 895185876, 9971185406, 112642410090, 1372455608400, 17750397057392, 236950003516626, 3286258330135734, 47688868443593540, 719345273005797900, 11222288509573985382, 181168865439054099266
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(x^2*(E^x-1)), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x^2*(exp(x) - 1)))) \\ G. C. Greubel, Nov 21 2017
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

a(n) ~ exp((n-r^3)/(2+r)-n) * n^(n+1/2) / (r^n * sqrt((2*r^3*(3+r) + n*(1+r)*(4+r))/(2+r))), where r is the root of the equation r^2*((2+r) * exp(r) - 2) = n.
(a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(n^(1/3)/3))) / (3*LambertW(n^(1/3)/3)).
From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(n-2*k,k)/(n-2*k)!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!. (End)

A358080 Expansion of e.g.f. 1/(1 - x^2 * exp(x)).

Original entry on oeis.org

1, 0, 2, 6, 36, 260, 2190, 21882, 248696, 3181320, 45229050, 707208590, 12063902532, 222939837276, 4436813677478, 94605994108290, 2151763873634160, 51999544476324752, 1330540380342907506, 35936656483848501654, 1021700660649312689660
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/(n - 2*k)!.
a(n) ~ n! / ((1 + LambertW(1/2)) * 2^(n+1) * LambertW(1/2)^n). - Vaclav Kotesovec, Oct 30 2022

A292978 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = k! * Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * T(n-1-i,k) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 2, 10, 15, 1, 0, 0, 6, 41, 52, 1, 0, 0, 6, 24, 196, 203, 1, 0, 0, 0, 24, 140, 1057, 877, 1, 0, 0, 0, 24, 60, 870, 6322, 4140, 1, 0, 0, 0, 0, 120, 480, 5922, 41393, 21147, 1, 0, 0, 0, 0, 120, 360, 5250, 45416, 293608, 115975
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   1,  1,  0,  0,  0, ...
   2,  3,  2,  0,  0, ...
   5, 10,  6,  6,  0, ...
  15, 41, 24, 24, 24, ...
		

Crossrefs

Columns k=0-4 give: A000110, A000248, A216507, A292889, A292979.
Rows n=0 gives A000012.
Main diagonal gives A000142.
Cf. A292973.

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << f(k) * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
      ary
    end
    def A292978(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A292978(20)

Formula

T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(j! * (n-k*j)!) for k > 0. - Seiichi Manyama, Jul 10 2022

A345747 a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/k!.

Original entry on oeis.org

1, 0, 2, 6, 36, 240, 2280, 27720, 425040, 7862400, 171188640, 4319330400, 125199708480, 4142318019840, 155388782989440, 6557345831836800, 308677784640825600, 16079233115648102400, 920518264903690252800, 57603377545940850624000
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n - 2*k)/k!, {k, 0, n/2}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(2*k)/(k!*(1-k*x)))))

Formula

E.g.f.: Sum_{k>=0} x^(2*k) / (k! * (1 - k * x)).
a(n) ~ sqrt(2*Pi) * exp((n - 1/2)/LambertW(exp(2/3)*(2*n - 1)/6) - 2*n) * n^(2*n + 1/2) / (3^(n + 1/2) * sqrt(1 + LambertW(exp(2/3)*(2*n - 1)/6)) * LambertW(exp(2/3)*(2*n - 1)/6)^n). - Vaclav Kotesovec, Oct 30 2022

A362702 Expansion of e.g.f. 1/(1 + LambertW(-x^2 * exp(x))).

Original entry on oeis.org

1, 0, 2, 6, 60, 500, 6150, 81522, 1300376, 23024808, 459915210, 10104914270, 243652575012, 6378414900156, 180405368976014, 5478759958122570, 177868544365861680, 6146407749811022672, 225262698504062963346, 8727083181657584963766
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^2*exp(x)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-k) / (k! * (n-2*k)!).

A292907 E.g.f.: exp(x^2 * exp(-x)).

Original entry on oeis.org

1, 0, 2, -6, 24, -140, 870, -5922, 45416, -381096, 3442410, -33382910, 345803172, -3801763836, 44156760830, -539962736250, 6929042527920, -93032248209872, 1303556965679826, -19018807375195638, 288341417011487420, -4534168069704168420
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Crossrefs

Column k=2 of A292973.
Cf. A216507.

Programs

  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^2*exp(-x))))

Formula

a(n) = (-1)^n * A216507(n).

A366459 Expansion of e.g.f. -log(1 - x^2 * exp(x)).

Original entry on oeis.org

0, 0, 2, 6, 24, 140, 990, 8442, 84056, 955656, 12227130, 173812430, 2717859012, 46362339036, 856770362630, 17050946225250, 363576478312560, 8269357341437072, 199837364514425586, 5113346326011170838, 138106722548779770620, 3926456810081828991780
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n\2, k^(n-2*k-1)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/2)} k^(n-2*k-1)/(n-2*k)!.
a(n) ~ (n-1)! / (2^n *LambertW(1/2)^n). - Vaclav Kotesovec, Dec 29 2023

A336961 Expansion of e.g.f. exp(x * (2 + x) * exp(x)).

Original entry on oeis.org

1, 2, 10, 56, 384, 3022, 26626, 258624, 2734360, 31168682, 380196414, 4932536908, 67717987948, 979613124414, 14877703575130, 236469561581768, 3922587278751504, 67743812585483218, 1215417753459838198, 22609895367286957572, 435341977596130683316
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2020

Keywords

Comments

Exponential transform of the oblong numbers (A002378).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x (2 + x) Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] k (k + 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(x * (2 + x) * exp(x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * k * (k + 1) * a(n-k).
Showing 1-10 of 12 results. Next