A216689
Expansion of e.g.f. exp( x * exp(x)^2 ).
Original entry on oeis.org
1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0
Cf.
A216507 (e.g.f. exp(x^2*exp(x))),
A216688 (e.g.f. exp(x*exp(x^2))).
Cf.
A240165 (e.g.f. exp(x*(1+exp(x)^2))).
-
With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
-
x='x+O('x^66);
Vec(serlaplace(exp( x * exp(x)^2 )))
/* Joerg Arndt, Sep 14 2012 */
-
/* From o.g.f.: */
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
-
/* From binomial sum: */
{a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
A245834
E.g.f.: exp( x*(1 + exp(3*x)) ).
Original entry on oeis.org
1, 2, 10, 71, 592, 5777, 64792, 814025, 11264176, 169871633, 2768582104, 48412950929, 902831609368, 17865749820089, 373564063839376, 8223263706957713, 189960800250512608, 4591950749700004385, 115866075506169417256, 3044877330738661504625, 83169542349597382767496, 2356949307613191494567561
Offset: 0
E.g.f.: E(x) = 1 + 2*x + 10*x^2/2! + 71*x^3/3! + 592*x^4/4! + 5777*x^5/5! +...
where E(x) = exp(x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 71*x^3 + 592*x^4 + 5777*x^5 + 64792*x^6 +...
where
A(x) = 1/(1-x) + x/(1-4*x)^2 + x^2/(1-7*x)^3 + x^3/(1-10*x)^4 + x^4/(1-13*x)^5 +...
-
Table[Sum[Binomial[n,k] *(3*k+1)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
With[{nn=30},CoefficientList[Series[Exp[x(1+Exp[3x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 09 2019 *)
-
{a(n)=local(A=1);A=exp( x*(1 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+1)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n,(3*k+1)^(n-k)*binomial(n,k))}
for(n=0,30,print1(a(n),", "))
A356815
Expansion of e.g.f. exp(-x * (exp(2*x) + 1)).
Original entry on oeis.org
1, -2, 0, 4, 32, 48, -608, -6400, -24064, 163072, 3567104, 28394496, 6535168, -3250745344, -50725740544, -344530853888, 2476610551808, 110057610608640, 1655672654135296, 9616664975114240, -195178079811272704, -6998474114188967936, -110894925369151848448
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*(exp(2*x)+1))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(2*k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (-1)^k*(2*k-1)^(n-k)*binomial(n, k));
A116071
Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0
E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
+ (10 + 9*y + 3*y^2 + y^3)*x^3/3!
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
+ (10 + 9*y + 3*y^2 + y^3)*x^3
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
1;
1, 1;
3, 2, 1;
10, 9, 3, 1;
41, 40, 18, 4, 1;
196, 205, 100, 30, 5, 1;
1057, 1176, 615, 200, 45, 6, 1;
6322, 7399, 4116, 1435, 350, 63, 7, 1;
41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
/* By definition C^C: */
{T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From e.g.f.: */
{T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From row polynomials (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */
{T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A356811
a(n) = Sum_{k=0..n} (k*n+1)^(n-k) * binomial(n,k).
Original entry on oeis.org
1, 2, 8, 71, 1040, 22457, 676000, 26861977, 1347932416, 82873789793, 6114540967424, 532596023373713, 53990083205042176, 6289985311473281329, 833180470332123750400, 124356049859476364116193, 20754548375601491155681280, 3847574240184742568296430273
Offset: 0
A245835
E.g.f.: exp( x*(2 + exp(3*x)) ).
Original entry on oeis.org
1, 3, 15, 108, 945, 9558, 109917, 1412316, 19959777, 306805482, 5087064789, 90370321704, 1710170426097, 34308056537550, 726612812416269, 16188742781216892, 378244417385086785, 9242436410233527762, 235609985190361119525, 6252379688953421699760, 172380307421633200750161
Offset: 0
E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 108*x^3/3! + 945*x^4/4! + 9558*x^5/5! +...
where E(x) = exp(2*x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 108*x^3 + 945*x^4 + 9558*x^5 + 109917*x^6 +...
where
A(x) = 1/(1-2*x) + x/(1-5*x)^2 + x^2/(1-8*x)^3 + x^3/(1-11*x)^4 + x^4/(1-14*x)^5 +...
-
Table[Sum[Binomial[n,k] * (3*k+2)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2014 *)
With[{nn=20},CoefficientList[Series[Exp[x(2+Exp[3x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 06 2015 *)
-
{a(n)=local(A=1);A=exp( x*(2 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+2)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n,(3*k+2)^(n-k)*binomial(n,k))}
for(n=0,30,print1(a(n),", "))
A367874
Expansion of e.g.f. exp(x * (2 + exp(x))).
Original entry on oeis.org
1, 3, 11, 48, 241, 1358, 8445, 57256, 419233, 3290202, 27507349, 243731084, 2278919697, 22402234390, 230781192301, 2484462888312, 27880896280513, 325432611292082, 3943062342781605, 49504837209940612, 642982531293731761, 8626753575445207278
Offset: 0
Showing 1-7 of 7 results.
Comments