A245834
E.g.f.: exp( x*(1 + exp(3*x)) ).
Original entry on oeis.org
1, 2, 10, 71, 592, 5777, 64792, 814025, 11264176, 169871633, 2768582104, 48412950929, 902831609368, 17865749820089, 373564063839376, 8223263706957713, 189960800250512608, 4591950749700004385, 115866075506169417256, 3044877330738661504625, 83169542349597382767496, 2356949307613191494567561
Offset: 0
E.g.f.: E(x) = 1 + 2*x + 10*x^2/2! + 71*x^3/3! + 592*x^4/4! + 5777*x^5/5! +...
where E(x) = exp(x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 71*x^3 + 592*x^4 + 5777*x^5 + 64792*x^6 +...
where
A(x) = 1/(1-x) + x/(1-4*x)^2 + x^2/(1-7*x)^3 + x^3/(1-10*x)^4 + x^4/(1-13*x)^5 +...
-
Table[Sum[Binomial[n,k] *(3*k+1)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
With[{nn=30},CoefficientList[Series[Exp[x(1+Exp[3x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 09 2019 *)
-
{a(n)=local(A=1);A=exp( x*(1 + exp(3*x +x*O(x^n))) );n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - (3*k+1)*x +x*O(x^n))^(k+1));polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0,n,(3*k+1)^(n-k)*binomial(n,k))}
for(n=0,30,print1(a(n),", "))
A116071
Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0
E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
+ (10 + 9*y + 3*y^2 + y^3)*x^3/3!
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
+ (10 + 9*y + 3*y^2 + y^3)*x^3
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
1;
1, 1;
3, 2, 1;
10, 9, 3, 1;
41, 40, 18, 4, 1;
196, 205, 100, 30, 5, 1;
1057, 1176, 615, 200, 45, 6, 1;
6322, 7399, 4116, 1435, 350, 63, 7, 1;
41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
/* By definition C^C: */
{T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From e.g.f.: */
{T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From row polynomials (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */
{T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Showing 1-2 of 2 results.
Comments