cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A199572 Number of round trips of length n on the cycle graph C_2 from any of the two vertices.

Original entry on oeis.org

1, 0, 4, 0, 16, 0, 64, 0, 256, 0, 1024, 0, 4096, 0, 16384, 0, 65536, 0, 262144, 0, 1048576, 0, 4194304, 0, 16777216, 0, 67108864, 0, 268435456, 0, 1073741824, 0, 4294967296, 0, 17179869184, 0, 68719476736, 0, 274877906944, 0
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2011

Keywords

Comments

See the array and triangle A199571 for the general cycle graph C_N counting.
This is A000302 and A000004 interleaved. - Omar E. Pol, Nov 09 2011
With offset = 1: Number of ways to separate n distinguishable objects into an odd size pile and an even size pile. For example: a(3) = 4 because we have: {{1},{2,3}}; {{2},{1,3}}; {{3},{1,2}}; {{1,2,3},{}}. - Geoffrey Critzer, Jun 10 2013
Inverse Stirling transform of A065143. - Vladimir Reshetnikov, Nov 01 2015

Examples

			a(2) = 4 from starting with vertex no. 1, with edges e1 and e2 to vertex no. 2: e1e1, e2e2, e1e2 and e2e1.
		

Crossrefs

Cf. A000007 (N=1), A078008 (N=3). a(n) is second row of array w(N,L) A199571, and second column of the triangle a(K,N) A199571.
Cf. A065143 (Stirling transform).

Programs

  • Mathematica
    nn = 39; Drop[Range[0, nn]! CoefficientList[Series[ Sinh[x] Cosh[x], {x, 0, nn}],x], 1] (* Geoffrey Critzer, Jun 10 2013 *)
  • PARI
    vector(100, n, n--; (2^(n) +(-2)^n)/2) \\ Altug Alkan, Nov 02 2015

Formula

a(n) = (2^n + (-2)^n)/2 = 2^(n-1)*(1 + (-1)^n).
O.g.f.: 1/(1-(2*x)^2).
E.g.f.: cosh(2*x)=U(0) where U(k) = 1 + 2*x^2/((4*k+1)*(2*k+1) - x^2*(4*k+1)*(2*k+1)/(x^2 + (4*k+3)*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012

A264036 Stirling transform of A077957 (aerated powers of 2).

Original entry on oeis.org

1, 0, 2, 6, 18, 70, 330, 1694, 9202, 53334, 332090, 2212782, 15638370, 116365990, 907975146, 7413080510, 63212284498, 561747543414, 5190343710746, 49752410984526, 493844719701186, 5068209425457862, 53705511911500746, 586862875255860062, 6605213319604075186
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 01 2015

Keywords

Comments

a(n) is the inverse binomial transform of A264037 without the leading zero [1, 1, 3, 13, 55, ...].

Examples

			G.f. = 1 + 2*x^2 + 6*x^3 + 18*x^4 + 70*x^5 + 330*x^6 + 1694*x^7 + 9202*x^8 + ...
		

Crossrefs

Column k=2 of A357681.

Programs

  • Mathematica
    Table[(BellB[n, Sqrt[2]] + BellB[n, -Sqrt[2]])/2, {n, 0, 24}]
  • PARI
    vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k, 2))) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = Sum_{k=0..n} A077957(k)*Stirling2(n,k).
a(n) = Sum_{k=0..floor(n/2)} 2^k*Stirling2(n,2*k).
a(n) = (Bell_n(sqrt(2)) + Bell_n(-sqrt(2)))/2, where Bell_n(x) is n-th Bell polynomial.
Bell_n(sqrt(2)) = a(n) + A264037(n)*sqrt(2).
E.g.f.: cosh(sqrt(2)*(exp(x) - 1)).
a(n) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k) * A264037(k). - Seiichi Manyama, Oct 12 2022

A357598 Expansion of e.g.f. sinh(2 * (exp(x)-1)) / 2.

Original entry on oeis.org

0, 1, 1, 5, 25, 117, 601, 3509, 22457, 153141, 1105561, 8453557, 68339833, 581495605, 5184047961, 48259748533, 468040609593, 4719817792565, 49396003390489, 535526127566773, 6004124908829177, 69509047405180213, 829801009239621849, 10202835010223731893
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(2*(exp(x)-1))/2)))
    
  • PARI
    a(n) = sum(k=0, (n-1)\2, 4^k*stirling(n, 2*k+1, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = round((Bell_poly(n, 2)-Bell_poly(n, -2)))/4;

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} 4^k * Stirling2(n,2*k+1).
a(n) = ( Bell_n(2) - Bell_n(-2) )/4, where Bell_n(x) is n-th Bell polynomial.
a(n) = 0; a(n) = Sum_{k=0..n-1} binomial(n-1, k) * A065143(k).

A357681 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * (exp(x) - 1) ).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 3, 6, 8, 0, 1, 0, 4, 9, 18, 25, 0, 1, 0, 5, 12, 30, 70, 97, 0, 1, 0, 6, 15, 44, 135, 330, 434, 0, 1, 0, 7, 18, 60, 220, 705, 1694, 2095, 0, 1, 0, 8, 21, 78, 325, 1228, 3906, 9202, 10707, 0, 1, 0, 9, 24, 98, 450, 1905, 7196, 22953, 53334, 58194, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2022

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1, ...
  0,  0,  0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5, ...
  0,  3,  6,   9,  12,  15, ...
  0,  8, 18,  30,  44,  60, ...
  0, 25, 70, 135, 220, 325, ...
		

Crossrefs

Columns k=0-4 give: A000007, A024430, A264036, A357615, A065143.
Column k=9 gives A357667.
Main diagonal gives A357682.
Cf. A292860.

Programs

  • PARI
    T(n, k) = sum(j=0, n\2, k^j*stirling(n, 2*j, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = round((Bell_poly(n, sqrt(k))+Bell_poly(n, -sqrt(k))))/2;

Formula

T(n,k) = Sum_{j=0..floor(n/2)} k^j * Stirling2(n,2*j).
T(n,k) = ( Bell_n(sqrt(k)) + Bell_n(-sqrt(k)) )/2, where Bell_n(x) is n-th Bell polynomial.

A357615 Expansion of e.g.f. cosh(sqrt(3) * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 3, 9, 30, 135, 705, 3906, 22953, 145053, 985800, 7136613, 54544485, 437961888, 3685605735, 32441696325, 297977767662, 2848636972971, 28278241848309, 290931124989546, 3097051613077269, 34064462020306473, 386600759467746528, 4521440483724439521
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2022

Keywords

Examples

			G.f. = 1 + 3*x^2 + 9*x^3 + 30*x^4 + 135*x^5 + 705*x^6 + ... - _Michael Somos_, Oct 06 2022
		

Crossrefs

Column k=3 of A357681.
Cf. A357572.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Cosh[Sqrt[3] * (Exp@x - 1)], {x, 0, n}]]; (* Michael Somos, Oct 06 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, 3^k*stirling(n, 2*k, 2));
    
  • PARI
    my(x='x+O('x^30)); apply(round, Vec(serlaplace(cosh(sqrt(3) * (exp(x) - 1))))) \\ Michel Marcus, Oct 06 2022
    
  • PARI
    {a(n) = if(n<0, 0, n!*simplify(polcoeff( cosh(quadgen(12) * (exp(x + x*O(x^n)) - 1)), n)))}; /* Michael Somos, Oct 06 2022 */

Formula

a(n) = Sum_{k=0..floor(n/2)} 3^k * Stirling2(n,2*k).
a(n) = ( Bell_n(sqrt(3)) + Bell_n(-sqrt(3)) )/2, where Bell_n(x) is n-th Bell polynomial.
a(n) = 1; a(n) = 3 * Sum_{k=0..n-1} binomial(n-1, k) * A357572(k).

A009599 Expansion of e.g.f. sinh(sinh(x)*exp(x)).

Original entry on oeis.org

0, 1, 2, 5, 20, 117, 782, 5441, 39496, 306921, 2602682, 24116413, 241121564, 2561633245, 28613237382, 334511450617, 4089814554384, 52302564139985, 699179303859698, 9751200460426357, 141494250613386916
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A065143.

Programs

  • Magma
    [(&+[2^(n-k)*StirlingSecond(n,k)*(1 - (-1)^k)/2: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 22 2018
  • Mathematica
    Table[Sum[StirlingS2[n, k]*(1-(-1)^k)/2*2^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 after Vladeta Jovovic *)
    Table[(BellB[n, 1/2] - BellB[n, -1/2]) 2^(n-1), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
    With[{nn=20},CoefficientList[Series[Sinh[Sinh[x]Exp[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 02 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(sinh(sinh(x)*exp(x))))) \\ G. C. Greubel, Jan 22 2018
    

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*(1-(-1)^k)/2*2^(n-k). - Vladeta Jovovic, Sep 26 2003
G.f.: Sum_{k>=0} x^(2*k+1)/Product_{i=0..2*k+1} (1 - 2*i*x). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: x/( G(0)-x^2 ) where G(k) = x^2 + (4*x*k-1)*(4*x*k+2*x-1) - x^2*(4*x*k-1)*(4*x*k+2*x-1)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A009153 Expansion of e.g.f. cosh(sinh(x)*exp(x)).

Original entry on oeis.org

1, 0, 1, 6, 29, 140, 757, 4858, 36409, 302520, 2681769, 25018510, 245905365, 2559272196, 28264854685, 330408571202, 4065526003313, 52349977261040, 702393407898705, 9795673312888214, 141820637175889805
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Cosh[Sinh[x]*E^x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 06 2014 *)
    Table[Sum[StirlingS2[n, k]*(1+(-1)^k)/2*2^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 06 2014 after Vladeta Jovovic *)
    Table[(BellB[n, 1/2] + BellB[n, -1/2]) 2^(n-1), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 2)*(1+(-1)^k)/2*2^(n-k)); \\ Michel Marcus, Nov 02 2015

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*(1+(-1)^k)/2*2^(n-k). - Vladeta Jovovic, Sep 26 2003
G.f.: 1 + Sum_{k>=0} x^(2*k+2)/Product_{i=0..2*k+2} (1-2*i*x). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: 1 + x^2/( G(0)-x^2 ) where G(k) = x^2 + (4*x*k+2*x-1)*(4*x*k+4*x-1) - x^2*(4*x*k+2*x-1)*(4*x*k+4*x-1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
a(n) ~ cosh(exp(r)*sinh(r)) * n^(n+1/2) / (r^(n+1/2) * exp(n+r) * sqrt(exp(2*r) * r * sech(exp(r)*sinh(r))^2 + (1+2*r) * tanh(exp(r)*sinh(r)))), where r is the root of the equation r*exp(r)*(cosh(r) + sinh(r))*tanh(exp(r)*sinh(r)) = n. - Vaclav Kotesovec, Aug 06 2014

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A357727 Expansion of e.g.f. cos( 2 * (exp(x) - 1) ).

Original entry on oeis.org

1, 0, -4, -12, -12, 100, 852, 4004, 9940, -36828, -726316, -6174300, -35968812, -109708508, 702818004, 16677814436, 188794428628, 1542659688996, 8359981681364, -3068614764636, -868989327994668, -15076627082974940, -179727483880747308
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2022

Keywords

Crossrefs

Column k=4 of A357728.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(cos(2*(exp(x)-1))))
    
  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*stirling(n, 2*k, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = round((Bell_poly(n, 2*I)+Bell_poly(n, -2*I)))/2;

Formula

a(n) = Sum_{k=0..floor(n/2)} (-4)^k * Stirling2(n,2*k).
a(n) = 1; a(n) = -4 * Sum_{k=0..n-1} binomial(n-1, k) * A357738(k).
a(n) = ( Bell_n(2 * i) + Bell_n(-2 * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.

A357663 Expansion of e.g.f. cosh( (exp(4*x) - 1)/2 ).

Original entry on oeis.org

1, 0, 4, 48, 464, 4480, 48448, 621824, 9320704, 154890240, 2746131456, 51237908480, 1007228375040, 20965557829632, 463091379159040, 10826828061147136, 266438312153120768, 6861616219559034880, 184128217520198123520, 5135753969867535941632
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Cosh[(Exp[4x]-1)/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 13 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(cosh((exp(4*x)-1)/2)))
    
  • PARI
    a(n) = sum(k=0, n\2, 4^(n-k)*stirling(n, 2*k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 4^(n-k) * Stirling2(n,2*k).

A357667 Expansion of e.g.f. cosh( 3 * (exp(x) - 1) ).

Original entry on oeis.org

1, 0, 9, 27, 144, 945, 6273, 44226, 339399, 2796795, 24387786, 223853355, 2159078445, 21827316888, 230536050165, 2536213188519, 28994911890048, 343806474384045, 4220933769308205, 53566838971016418, 701650841036287275, 9473067208871584407
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2022

Keywords

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(cosh(3*(exp(x)-1))))
    
  • PARI
    a(n) = sum(k=0, n\2, 9^k*stirling(n, 2*k, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = round((Bell_poly(n, 3)+Bell_poly(n, -3)))/2;

Formula

E.g.f.: cosh( 3 * (exp(x) - 1) ).
a(n) = Sum_{k=0..floor(n/2)} 9^k * Stirling2(n,2*k).
a(n) = ( Bell_n(3) + Bell_n(-3) )/2, where Bell_n(x) is n-th Bell polynomial.
a(n) = 1; a(n) = 9 * Sum_{k=0..n-1} binomial(n-1, k) * A357668(k).
Showing 1-10 of 11 results. Next