A216857 Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.
0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
Programs
-
Mathematica
With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
-
PARI
for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
-
PARI
my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017
Formula
E.g.f.: T(x*exp(x)) where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-1).
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Jul 09 2013
O.g.f.: Sum_{n>=0} n^(n-1)* x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
E.g.f.: the compositional inverse of A(x) is -A(-x). - Alexander Burstein, Aug 11 2018
Comments