cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A059257 Primes p such that x^47 = 2 has no solution mod p.

Original entry on oeis.org

283, 659, 941, 1129, 1223, 1693, 1787, 2069, 2351, 2539, 2633, 3761, 4231, 4513, 4889, 5077, 5171, 5641, 5923, 6299, 6581, 6863, 7333, 8179, 8273, 8461, 8837, 9871, 10247, 10529, 11093, 11657, 11939, 12409, 12503, 12973, 13537, 13913, 14759
Offset: 1

Views

Author

Klaus Brockhaus, Jan 23 2001

Keywords

Comments

Presumably this is also Primes congruent to 1 mod 47. - N. J. A. Sloane, Jul 11 2008. Not so! The smallest counterexample is 26227: 26227 == 1 (mod 47), but 131^47 == 2 (mod 26227), therefore this prime is not in the sequence. - Bruno Berselli, Sep 12 2012
All terms are 1 mod 94. - Charles R Greathouse IV, Sep 13 2012
Complement of A216885 relative to A000040. - Vincenzo Librandi, Sep 20 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(15000) | forall{x: x in ResidueClassRing(p) | x^47 ne 2}]; // Bruno Berselli, Sep 12 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^47 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[1800]], ok] (* Vincenzo Librandi, Sep 20 2012  *)
  • PARI
    select(p->!ispower(Mod(2,p),47),primes(3000)) \\ Charles R Greathouse IV, Sep 13 2012
Showing 1-1 of 1 results.