cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A216959 a(n) = A216958(n)/2.

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 18, 36, 71, 140, 280, 557, 1111, 2218, 4432, 8859, 17710, 35412, 70812, 141605, 283197, 566364, 1132695, 2265363, 4530659, 9061259, 18122454, 36244783, 72489435, 144978745, 289957235, 579914215, 1159828166, 2319655810, 4639311084, 9278621655
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2012

Keywords

Crossrefs

Cf. A216958.

A216960 a(n) = A122536(n) - A216958(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 4, 2, 6, 6, 12, 10, 26, 24, 56, 50, 116, 106, 236, 230, 486, 472, 1010, 960, 2054, 2004, 4136, 4086, 8434, 8254, 17018, 16828, 34184, 33992, 69056, 68314, 138754, 138020, 278174, 277452, 559152, 556246, 1121116, 1118170, 2245076, 2242058, 4501566, 4489798
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2012

Keywords

Crossrefs

Extensions

a(31)-a(35) from N. J. A. Sloane, Oct 25 2012
More terms from Hakan Icoz, Dec 28 2021

A122536 Number of binary sequences of length n with no initial repeats (or, with no final repeats).

Original entry on oeis.org

2, 2, 4, 6, 12, 20, 40, 74, 148, 286, 572, 1124, 2248, 4460, 8920, 17768, 35536, 70930, 141860, 283440, 566880, 1133200, 2266400, 4531686, 9063372, 18124522, 36249044, 72493652, 144987304, 289965744
Offset: 1

Views

Author

Sarah Nibs, Sep 18 2006

Keywords

Comments

An initial repeat of a string S is a number k>=1 such that S(i)=S(i+k) for i=0..k-1. In other words, the first k symbols are the same as the next k symbols, e.g., ABCDABCDZQQ has an initial repeat of size 4.
Equivalently, this is the number of binary sequences of length n with curling number 1. See A216955. - N. J. A. Sloane, Sep 26 2012

Examples

			a(4)=6: 0100, 0110, 0111, 1000, 1001 and 1011. (But not 00**, 11**, 0101, 1010.)
		

Crossrefs

Twice A093371. Leading column of each of the triangles A216955, A217209, A218869, A218870. Different from, but easily confused with, A003000 and A216957. - N. J. A. Sloane, Sep 26 2012
See A121880 for difference from 2^n.

Formula

Conjecture: a_n ~ C * 2^n where C is 0.27004339525895354325... [Chaffin, Linderman, Sloane, Wilks, 2012]
a(2n+1)=2*a(2n) = A211965(n+1), a(2n)=2*a(2n-1)-A216958(n) = A211966(n). - N. J. A. Sloane, Sep 28 2012
a(1) = 2; a(2n) = 2*[a(2n-1) - A216959(n)], n >= 1. - Daniel Forgues, Feb 25 2015

Extensions

a(31)-a(71) computed from recurrence and the first 30 terms of A216958 by N. J. A. Sloane, Sep 28 2012, Oct 25 2012

A218875 Triangle read by rows: T(n,k) (1 <= k <= n) = number of robust primitive binary sequences of length n and curling number k.

Original entry on oeis.org

2, 2, 0, 4, 2, 0, 6, 4, 2, 0, 10, 12, 4, 2, 0, 20, 20, 8, 4, 2, 0, 36, 52, 20, 8, 4, 2, 0, 72, 98, 36, 16, 8, 4, 2, 0, 142, 214, 76, 36, 16, 8, 4, 2, 0, 280, 414, 160, 68, 32, 16, 8, 4, 2, 0, 560, 870, 326, 140, 68, 32, 16, 8, 4, 2, 0, 1114, 1720, 640, 276, 132, 64, 32, 16, 8, 4, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2012

Keywords

Examples

			Triangle begins:
[2],
[2, 0],
[4, 2, 0],
[6, 4, 2, 0],
[10, 12, 4, 2, 0],
[20, 20, 8, 4, 2, 0],
[36, 52, 20, 8, 4, 2, 0],
[72, 98, 36, 16, 8, 4, 2, 0],
[142, 214, 76, 36, 16, 8, 4, 2, 0],
[280, 414, 160, 68, 32, 16, 8, 4, 2, 0],
...
		

Crossrefs

Cf. A216955, A218869, A218876. First column is A216958.

Formula

The triangle in A218869 is the sum of triangles A218875 and A218876.

A211965 Number of binary sequences of length 2n-1 and curling number 1.

Original entry on oeis.org

2, 4, 12, 40, 148, 572, 2248, 8920, 35536, 141860, 566880, 2266400, 9063372, 36249044, 144987304, 579931488, 2319690516, 9278691224, 37114623248, 148458209744, 593832272556, 2375327957436, 9501309564288, 38005233726372, 152020925844036
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2012

Keywords

Comments

Equivalently, number of binary sequences of length 2n-1 with no initial repeats (see A122536).

Crossrefs

Bisection of A122536.

Formula

a(n) = 2*A093371(2n-1).
a(n) = 2*A211966(n-1), n >= 2.

A211966 Number of binary sequences of length 2n and curling number 1.

Original entry on oeis.org

2, 6, 20, 74, 286, 1124, 4460, 17768, 70930, 283440, 1133200, 4531686, 18124522, 72493652, 289965744, 1159845258, 4639345612, 18557311624, 74229104872, 296916136278, 1187663978718, 4750654782144, 19002616863186, 76010462922018
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2012

Keywords

Comments

Equivalently, number of binary sequences of length 2n with no initial repeats (see A122536).

Crossrefs

Bisection of A122536.

Formula

a(n) = 2*A093371(2n) = A093371(2n+1) = A211965(n+1)/2.

A217943 Triangle read by rows: T(n,k) = 2*C(n-1,k)-C(n,k) for kA216955(n,k).

Original entry on oeis.org

2, -2, 0, 2, -2, 2, -2, 2, -2, 0, 0, 0, 2, -2, 4, -2, -2, 0, 2, -2, 0, 0, 0, 0, 0, 2, -2, 6, -6, 2, -2, 0, 0, 2, -2, 0, 6, -6, 0, 0, 0, 0, 2, -2, 10, -10, 0, 2, -2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2
Offset: 2

Views

Author

N. J. A. Sloane, following a suggestion from Allan Wilks, Oct 25 2012

Keywords

Examples

			Triangle begins:
[2, -2]
[0, 2, -2]
[2, -2, 2, -2]
[0, 0, 0, 2, -2]
[4, -2, -2, 0, 2, -2]
[0, 0, 0, 0, 0, 2, -2]
[6, -6, 2, -2, 0, 0, 2, -2]
[0, 6, -6, 0, 0, 0, 0, 2, -2]
[10, -10, 0, 2, -2, 0, 0, 0, 2, -2]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2]
[20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2]
...
		

Crossrefs

Cf. A216955.
The nonzero entries in the first column form A216958.
Showing 1-7 of 7 results.