cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216979 Primes of the form n^6+2.

Original entry on oeis.org

2, 3, 3518743763, 17596287803, 282429536483, 54980371265627, 93385106978411, 110322650964683, 151939915084883, 1363532208525371, 1870004703089603, 3684302682180851, 5257948522194371, 15813440003753003, 22416464978706683, 33227552537453171, 80425212553252451
Offset: 1

Views

Author

Michel Lagneau, Sep 21 2012

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is n^6 + 2 ]; // Vincenzo Librandi, Oct 12 2012
  • Mathematica
    lst={}; Do[p=n^6+2; If[PrimeQ[p], AppendTo[lst, p]], {n, 6!}]; lst
    Select[Table[n^6 + 2, {n, 0, 700}], PrimeQ] (* Vincenzo Librandi, Oct 12 2012 *)
  • PARI
    v=select(n->isprime(n^6+2),vector(2000,n,n-1)); /* A216978 */
    vector(#v, n, v[n]^6+2)
    /* Joerg Arndt, Sep 21 2012 */
    

A216980 Numbers n such that n^7+2 is prime.

Original entry on oeis.org

0, 1, 9, 21, 53, 63, 99, 123, 141, 155, 185, 213, 315, 363, 375, 449, 513, 521, 543, 555, 653, 669, 699, 731, 735, 759, 801, 843, 881, 975, 983, 995, 1031, 1095, 1115, 1131, 1149, 1161, 1221, 1253, 1395, 1413, 1451, 1473, 1491, 1571, 1599, 1625, 1659, 1733
Offset: 1

Views

Author

Michel Lagneau, Sep 21 2012

Keywords

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[n^7+2], AppendTo[lst, n]], {n, 0, 10^3}]; lst
    Select[Range[0,2000],PrimeQ[#^7+2]&] (* Harvey P. Dale, Mar 29 2016 *)
  • PARI
    select(n->isprime(n^7+2),vector(2000,n,n-1)) /* Joerg Arndt, Sep 21 2012 */

A154938 Numbers k such that k^6 - 2 and k^6 + 2 are both primes.

Original entry on oeis.org

195, 213, 231, 657, 1563, 1749, 2967, 3597, 3627, 4263, 4887, 6867, 6993, 7257, 7725, 9045, 9201, 9717, 11595, 12579, 13029, 14145, 14259, 14367, 15837, 16131, 16581, 17259, 19905, 19917, 21081, 21711, 23127, 24435, 24921, 28299, 28707
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(n^6-2) and IsPrime(n^6+2)]; // Vincenzo Librandi, Nov 26 2010
  • Mathematica
    lst={};Do[p1=n^6-2;p2=n^6+2;If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,n]],{n,0,9!}];lst
    Select[Range[30000],AllTrue[#^6+{2,-2},PrimeQ]&] (* Harvey P. Dale, Jun 21 2025 *)
Showing 1-3 of 3 results.