A217274 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.
0, 1, 7, 35, 154, 637, 2548, 9996, 38759, 149205, 571781, 2184910, 8333871, 31750824, 120875944, 459957169, 1749692735, 6654580387, 25306064602, 96226175941, 365880389868, 1391138718116, 5289228800247, 20109822277181, 76457523763621, 290689756066542
Offset: 0
Examples
Writing c(j) as cj and s(k) as sk, we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5 and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11). We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. Witula, Ramanujan type trigonometric formulas, Demonstratio Math., Vol. XLV, No. 4, 2012, pp. 789-796.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
Crossrefs
Programs
-
Magma
I:=[0,1,7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 26 2015
-
Mathematica
LinearRecurrence[{7,-14,7}, {0,1,7}, 30] CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
-
Maxima
a[0]:0$ a[1]:1$ a[2]:7$ a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3]; makelist(a[n], n, 0, 25); /* Martin Ettl, Oct 11 2012 */
-
PARI
concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ Michel Marcus, Jul 25 2015
Formula
G.f.: x/(1-7*x+14*x^2-7*x^3).
Comments