A217312 Number of Motzkin paths of length n with no level steps at height 1.
1, 1, 2, 3, 6, 11, 23, 48, 107, 244, 578, 1402, 3485, 8826, 22729, 59340, 156766, 418319, 1125956, 3053400, 8334578, 22881070, 63135802, 175000959, 487042069, 1360440914, 3812681435, 10717405374, 30209571942, 85368323429, 241801775480, 686366436772
Offset: 0
Keywords
Examples
The a(4) = 6 paths are HHHH, UDUD, HUDH, UDHH, HHUD, UUDD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n,y) option remember; `if`(y>n, 0, `if`(n=0, 1, `if`(y<>1, b(n-1, y), 0)+ `if`(y>0, b(n-1, y-1), 0)+ b(n-1, y+1))) end: a:= n-> b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Mar 18 2013
-
Mathematica
b[n_, y_] := b[n, y] = If[y>n, 0, If[n == 0, 1, If[y != 1, b[n-1, y], 0] + If[y>0, b[n-1, y-1], 0] + b[n-1, y+1]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 22 2017, after Alois P. Heinz *)
-
Maxima
a(n):=(sum((k+1)*sum(((sum((-1)^(j-i)*binomial(k+i+1,i-j)*binomial(k+2*j,j),j,0,i))*binomial(n-k-i-1,k+1))/(k+i+1),i,0,n-2*k-1),k,0,(n-1)/2))+1; /* Vladimir Kruchinin, Mar 12 2016 */
Formula
G.f.: 2*(1+x)/(2-x-3*x^2+x*sqrt(1-2*x-3*x^2)) = 1/(1-x-x^2*R), where R is the g.f. of Riordan numbers (A005043).
a(n) = 1+Sum_{k=0..(n-1)/2}((k+1)*Sum_{i=0..n-2*k-1}(((Sum_{j=0..i}((-1)^(j-i)*binomial(k+i+1,i-j)*binomial(k+2*j,j)))*binomial(n-k-i-1,k+1))/(k+i+1))). - Vladimir Kruchinin, Mar 12 2016
D-finite with recurrence (-n+1)*a(n) +(4*n-7)*a(n-1) -3*a(n-2) +(-11*n+32)*a(n-3) +3*(n-1)*a(n-4) +9*(n-4)*a(n-5)=0. - R. J. Mathar, Sep 24 2016
a(n) ~ 3^(n - 1/2) / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 20 2019