A252354
Number of Motzkin paths of length n with no level steps at height 2.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 46, 106, 248, 584, 1389, 3329, 8047, 19607, 48167, 119287, 297829, 749632, 1902044, 4864553, 12538933, 32568528, 85224251, 224618900, 596106393, 1592429464, 4280667705, 11575188106, 31474407317, 86029586086, 236292044931, 651952466845
Offset: 0
-
CoefficientList[Series[1/(1-x-x^2(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
-
x='x + O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))) \\ G. C. Greubel, Feb 14 2017
A253831
Number of 2-Motzkin paths with no level steps at height 1.
Original entry on oeis.org
1, 2, 5, 12, 30, 76, 197, 522, 1418, 3956, 11354, 33554, 102104, 319608, 1027237, 3381714, 11371366, 38946892, 135505958, 477781296, 1703671604, 6132978608, 22256615602, 81327116484, 298938112816, 1104473254912, 4098996843500, 15272792557230, 57106723430892, 214202598271360, 805743355591301
Offset: 0
-
rec:= (54+36*n)*a(n)+(-3+7*n)*a(n+1)+(-60-36*n)*a(n+2)+(36+16*n)*a(n+3)+(-6-2*n)*a(n+4) = 0:
f:= gfun:-rectoproc({rec,seq(a(i)=[1,2,5,12][i+1],i=0..3)},a(n),remember):
seq(f(n),n=0..100); # Robert Israel, Apr 29 2015
-
CoefficientList[Series[1/(1-2*x-x*((1-Sqrt[1-4*x])/(3-Sqrt[1-4*x]))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
-
a(n):=sum(sum(((sum((k+1)*binomial(k+m,k+1)*binomial(2*j-k+m-1,j-k)*(-1)^(k),k,0,j))*2^(n-j-2*m)*binomial(n-m-j,m))/(j+m),j,0,n-2*m),m,1,n/2)+2^n; /* Vladimir Kruchinin, Mar 11 2016 */
A257363
Number of 3-Motzkin paths with no level steps at height 1.
Original entry on oeis.org
1, 3, 10, 33, 110, 369, 1247, 4248, 14603, 50724, 178314, 635526, 2300829, 8477382, 31842897, 122103276, 478372886, 1915188093, 7831613468, 32674683984, 138871668314, 600140517762, 2631926843602, 11690520554421, 52498671870181, 237966449687118, 1087246253873875, 5001141997115010, 23137102115963262
Offset: 0
-
rec:= (95+95*n)*a(n)+(-180-9*n)*a(n+1)+(-329-197*n)*a(n+2)+(369+144*n)*a(n+3)+(-117-36*n)*a(4+n)+(12+3*n)*a(n+5):
f:= gfun:-rectoproc({rec,a(0)=1,a(1)=3,a(2)=10,a(3)=33,a(4)=110},a(n),remember):
seq(f(n),n=0..100); # Robert Israel, Apr 28 2015
-
CoefficientList[Series[2*(3+x)/(6-17*x-9*x^2+x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
A257386
Number of Motzkin paths of length n with no level steps at height 3.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 51, 126, 316, 799, 2034, 5202, 13357, 34407, 88888, 230237, 597829, 1555962, 4058944, 10612102, 27807135, 73025751, 192204957, 507025163, 1340545113, 3552492126
Offset: 0
-
CoefficientList[Series[1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 24 2015 *)
-
x='x+O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))))) \\ G. C. Greubel, Apr 08 2017
A257387
Number of Motzkin paths of length n with no level steps at height 4.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 51, 127, 323, 834, 2179, 5743, 15238, 40637, 108800, 292200, 786703, 2122387, 5735596, 15522682, 42064028, 114117541, 309918698, 842489130, 2292332265, 6242655886
Offset: 0
-
CoefficientList[Series[1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 24 2015 *)
-
x='x+O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))))))) \\ G. C. Greubel, Jun 03 2017
Showing 1-5 of 5 results.
Comments