cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217351 Numbers k such that 6^k + 7 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 21, 24, 27, 30, 54, 70, 126, 369, 435, 612, 787, 1275, 2155, 2436, 5734, 6016, 16107, 25786, 34266, 38841, 45834, 46584
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Crossrefs

Cf. A104115 (associated primes).

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[6^# + 7] &]
  • PARI
    is(n)=ispseudoprime(6^n+7) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(20)-a(21) from Bruno Berselli, Oct 04 2012
a(22)-a(23) from Michael S. Branicky, Apr 30 2023
a(24)-a(27) from Michael S. Branicky, Sep 19 2024

A290022 Prime numbers of the form 6^k - 7.

Original entry on oeis.org

29, 1289, 46649, 1679609, 10077689, 60466169, 470184984569, 3656158440062969, 623673825204293256669089197883129849, 134713546244127343440523266742756048889, 293242067884135544935936513642647623193965101049
Offset: 1

Views

Author

Robert Price, Sep 03 2017

Keywords

Crossrefs

Cf. A217352.

Programs

  • Mathematica
    Select[Table[6^k - 7, {k, 2, 100}], PrimeQ[#] &]

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A309527 Numbers k such that 6^k + 17 is prime.

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 19, 27, 79, 198, 565, 787, 2183, 3811, 4748, 6210, 7887, 8965, 13303, 20125, 23433, 28797
Offset: 1

Views

Author

Daniel Starodubtsev, Aug 06 2019

Keywords

Comments

a(20) > 14000. - Daniel Starodubtsev, Apr 17 2020

Examples

			3 is in the sequence because 6^3 + 17 = 233, which is prime.
		

Crossrefs

Programs

  • PARI
    lista(nn)=for(k=0,nn,if(ispseudoprime(6^k+17),print1(k", ")))

Extensions

a(17)-a(18) from Daniel Starodubtsev, Mar 16 2020
a(19) from Daniel Starodubtsev, Apr 17 2020
a(20)-a(22) from Michael S. Branicky, Mar 14 2023
Showing 1-4 of 4 results.