cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217366 a(n) = ((n+6) / gcd(n+6,4)) * (n / gcd(n,4)).

Original entry on oeis.org

0, 7, 2, 27, 5, 55, 9, 91, 14, 135, 20, 187, 27, 247, 35, 315, 44, 391, 54, 475, 65, 567, 77, 667, 90, 775, 104, 891, 119, 1015, 135, 1147, 152, 1287, 170, 1435, 189, 1591, 209, 1755, 230, 1927, 252, 2107, 275, 2295, 299, 2491, 324, 2695, 350, 2907, 377
Offset: 0

Views

Author

Jean-François Alcover, Oct 01 2012

Keywords

Comments

The 6th sequence (p=6) of the family A060819(n)*A060819(n+p).

Crossrefs

Programs

  • Magma
    [(9-7*(-1)^n)/16*n*(n+6): n in [0..50]]; // G. C. Greubel, Sep 21 2018
  • Mathematica
    a[n_] := 8^(Mod[n, 2] - 1)*n*(n + 6); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 01 2012 *)
    CoefficientList[Series[x*(7 + 2*x + 6*x^2 - x^3 - 5*x^4)/(1 - x^2)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
    LinearRecurrence[{0,3,0,-3,0,1},{0,7,2,27,5,55},60] (* Harvey P. Dale, Sep 14 2022 *)
  • PARI
    concat(0, Vec(x*(7+2*x+6*x^2-x^3-5*x^4)/((1-x)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Jan 27 2016
    
  • PARI
    vector(50, n, n--; (9-7*(-1)^n)/16*n*(n+6)) \\ G. C. Greubel, Sep 21 2018
    

Formula

a(n) = 8^(n mod 2 - 1)*n*(n + 6).
G.f.: x*(7 + 2*x + 6*x^2 - x^3 - 5*x^4)/(1 - x^2)^3. - Bruno Berselli, Oct 01 2012
From Colin Barker, Jan 27 2016: (Start)
a(n) = (9 - 7*(-1)^n)*n*(n + 6)/16.
a(n) = (n^2 + 6*n)/8 for n even.
a(n) = n^2 + 6*n for n odd. (End)
Sum_{n>=1} 1/a(n) = 133/90. - Amiram Eldar, Aug 12 2022