A243397
Numbers n such that 19^n+4 is prime.
Original entry on oeis.org
0, 1, 3, 21, 145, 273, 1425, 9613, 15711, 18445
Offset: 1
-
[n: n in [0..1000] | IsPrime(19^n+4)]; // Vincenzo Librandi, Oct 16 2014
-
Select[Range[0, 10000], PrimeQ[19^# + 4] &] (* Vincenzo Librandi, Oct 16 2014 *)
-
for(n=0, 10^5, if(ispseudoprime(19^n+4), print1(n, ", ")))
A247166
Numbers k such that 15^k+4 is prime.
Original entry on oeis.org
0, 1, 2, 7, 10, 39, 42, 201, 225, 551
Offset: 1
-
[n: n in [0..300] | IsPrime(15^n+4)]; // Vincenzo Librandi, Dec 01 2015
-
a247166[n_Integer] := Select[Range[n], PrimeQ[15^# + 4] &]; a247166[10^4] (* Michael De Vlieger, Dec 03 2014 *)
-
for(n=0, 1e5, if(ispseudoprime(15^n+4), print1(n, ", ")))
A217385
Numbers n such that 9^n + 8 is prime.
Original entry on oeis.org
1, 2, 4, 7, 10, 19, 22, 44, 62, 76, 122, 2191, 3134, 9244, 40999, 48230
Offset: 1
A253380
Numbers k such that 17^k + 4 is prime.
Original entry on oeis.org
0, 2, 6, 18, 7238
Offset: 1
For k = 0: 17^0 + 4 = 5, which is prime, so 0 is a term of the sequence.
For k = 2: 17^2 + 4 = 293, which is prime, so 2 is a term of the sequence.
-
Select[Range@10^5, PrimeQ[17^# + 4] &] (* Michael De Vlieger, Jan 03 2015 *)
-
for(n=0, 1e5, if(ispseudoprime(17^n+4), print1(n, ", ")))
Showing 1-4 of 4 results.
Comments