A217420 Number of rooted unlabeled trees where the root node has degree 2 and both branches are distinct.
0, 0, 0, 1, 2, 6, 14, 37, 92, 239, 613, 1607, 4215, 11185, 29814, 80070, 216061, 586218, 1597292, 4370721, 12003163, 33077327, 91431425, 253454781, 704425087, 1962537755, 5479843060, 15332668869, 42983623237, 120716987723, 339595975795, 956840683968
Offset: 1
Keywords
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 57.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Charlie Liou and Anthony Mendes, Matrix Representations From Labeled Trees, J. Int. Seq. (2023) Vol. 26, No. 7, Article 23.7.6.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: a:= proc(n) option remember; (add(b(k)*b(n-1-k), k=0..n-1)- `if`(irem(n, 2, 'r')=1, b(r), 0))/2 end: seq(a(n), n=1..50); # Alois P. Heinz, May 16 2013
-
Mathematica
Needs["Combinatorica`"] nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Take[CoefficientList[CycleIndex[AlternatingGroup[2],s]-CycleIndex[SymmetricGroup[2],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(i*k),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn] (* after code by Robert A. Russell in A000081 *)
-
Python
# uses function in A000081 def A217420(n): return sum(A000081(i)*A000081(n-1-i) for i in range(1,(n-1)//2+1)) - ((A000081((n-1)//2)+1)*A000081((n-1)//2)//2 if n % 2 else 0) # Chai Wah Wu, Feb 03 2022