cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217420 Number of rooted unlabeled trees where the root node has degree 2 and both branches are distinct.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 14, 37, 92, 239, 613, 1607, 4215, 11185, 29814, 80070, 216061, 586218, 1597292, 4370721, 12003163, 33077327, 91431425, 253454781, 704425087, 1962537755, 5479843060, 15332668869, 42983623237, 120716987723, 339595975795, 956840683968
Offset: 1

Views

Author

Geoffrey Critzer, Oct 19 2012

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 57.

Crossrefs

Cf. A000081 (rooted trees), A000055 (free trees).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; (add(b(k)*b(n-1-k), k=0..n-1)-
          `if`(irem(n, 2, 'r')=1, b(r), 0))/2
        end:
    seq(a(n), n=1..50); #  Alois P. Heinz, May 16 2013
  • Mathematica
    Needs["Combinatorica`"]
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Take[CoefficientList[CycleIndex[AlternatingGroup[2],s]-CycleIndex[SymmetricGroup[2],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(i*k),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn]  (* after code by Robert A. Russell in A000081 *)
  • Python
    # uses function in A000081
    def A217420(n): return sum(A000081(i)*A000081(n-1-i) for i in range(1,(n-1)//2+1)) - ((A000081((n-1)//2)+1)*A000081((n-1)//2)//2 if n % 2 else 0) # Chai Wah Wu, Feb 03 2022

Formula

O.g.f.: x * (T(x)^2/2 - T(x^2)/2) where T(x) is o.g.f. for A000081.
a(n) = A000081(n-1) - A000055(n-1) for n > 1.
a(n) = Sum_{1 <= i < j, i + j = m} A000081(i) * A000081(j) + (1 - (-1)^n) * binomial(A000081(m/2),2) / 2 where m = n - 1. - Walt Rorie-Baety, Aug 30 2021