A217471 Partial sum of fifth power of the even-indexed Fibonacci numbers.
0, 1, 244, 33012, 4117113, 507401488, 62424765712, 7678070811369, 944346243245076, 116147016764564500, 14285140634333292625, 1756956185432949082176, 216091326285380812359744, 26577476188001703626949937
Offset: 0
Examples
a(2) = 244 = 2*(8-3)/5 - 610/20 + (832040-6765)/55^2 - 7/22. a(2) = 244 = (1/11)*5^5 - (15/44)*5^3 + (25/44)*5 - 7/22. a(2) = 244 = (5-1)^2*(4*5^3 + 8*5^2 - 3*5 - 14)/44 = (4*5^3 + 8*5^2 - 3*5 - 14)*(4/11).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..475
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
Crossrefs
Cf. A163198 (third powers).
Programs
-
Mathematica
Table[Sum[Fibonacci[2*k]^5, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Apr 12 2017 *) Accumulate[Fibonacci[Range[0,30,2]]^5] (* Harvey P. Dale, Jun 30 2025 *)
-
PARI
a(n) = sum(k=1, n, fibonacci(2*k)^5); \\ Michel Marcus, Feb 29 2016
Formula
a(n) = Sum_{k=0..n} F(2*k)^5, n>=0.
O.g.f.: x*(1+99*x+416*x^2+99*x^3+x^4)/((1-3*x+x^2)*(1-18*x+x^2)*(1-123*x+x^2)*(1-x)).
a(n) = 2*(F(2*(n+1)) - F(2*n))/5 - F(3*(2*n+1))/20 +
(F(10*(n+1)) - F(10*n))/F(10)^2 - 7/22 (from the partial fraction decomposition of the o.g.f.).
a(n) = (1/11)*F(2*n+1)^5 - (15/44)*F(2*n+1)^3 + (25/44)*F(2*n+1) - 7/22 (from Ozeki reference, Theorem 2, p. 109 --- with a misprint -- and from Prodinger reference, p. 207).
a(n) =(F(2*n+1)-1)^2*(4*F(2*n+1)^3 + 8*F(2*n+1)^2 - 3*F(2*n+1) - 14)/44 (an example for Melham's conjecture, see the reference, eq. (2.7) for m=2).
Comments